Fast Monitoring of Traffic Subpopulations

Anirudh Ramachandran, Srinivasan Seetharaman, Nick Feamster, and Vijay Vazirani
School of Computer Science, Georgia Tech
. 266 Ferst Drive, Atlanta, GA, USA
{avr,srini,feamster,vazirani}@cc.gatech.edu

ABSTRACT

Network accounting, forensics, security, and performance monitor-
ing applications often need to examine detailed traces from subsets
of flows (“subpopulations”), where the application requires flex-
ibility in specifying the subpopulation (e.g., to detect a portscan,
the application must observe many packets between a source and
a destination with one packet to each port). Unfortunately, the dy-
namism and volume of network traffic on many high-speed links
requires traffic sampling, which adversely affects subpopulation
monitoring: because many subpopulations of interest to operators
are low-volume flows, conventional sampling schemes (e.g., uni-
form random sampling) can miss much of the subpopulation’s traf-
fic. Today’s routers and network devices provide scant support for
monitoring specific traffic subpopulations.

This paper presents the design, implementation, and evaluation
of FlexSample, a traffic monitoring framework that dynamically ex-
tracts traffic from subpopulations that operators define using con-
ditions on packet header fields. FlexSample uses a fast, flexible
counter array to provide rough estimates of packets’ membership
in respective subpopulations. Based on these coarse estimates,
FlexSample then makes per-packet sampling decisions to sample
proportionately from each subpopulation (as specified by a net-
work operator), subject to an overall sampling constraint. We apply
FlexSample to extract subpopulations such as port scans and traffic
to high-degree nodes and find that it can capture significantly more
packets from these subpopulations than conventional approaches.

Categories and Subject Descriptors: C.2.3 [Computer-
Communication Networks]: Network Monitoring C.4 [Computer-
Communication Networks]: Measurement Techniques

General Terms: Algorithms, Design, Measurement, Security

Keywords: traffic subpopulations, traffic statistics, sampling,
counters, FlexSample

1. INTRODUCTION

Routers and other devices that monitor traffic on high-speed net-
works cannot collect and record accurate statistics based on every
packet in a traffic stream. Updates to statistics typically require ac-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

IMC’08, October 20-22, 2008, Vouliagmeni, Greece.

Copyright 2008 ACM 978-1-60558-334-1/08/10 ...$5.00.

257

cess to a large—and relatively slow—memory (such as DRAM).
They thus rely on packet sampling: selecting packets uniformly at
random from the packet stream. Uniform random sampling works
well for the traditional goals of billing and traffic engineering be-
cause these metrics require accurate estimates of only the “heavy-
hitter” flows, which are typically well-represented in sampled traf-
fic. Although many schemes have improved upon uniform random
sampling [14, 15,43], heavy-hitter identification remains their pri-
mary focus.

Recently, however, operators have started to monitor traffic for
a broader range of applications: identifying P2P “supernodes”,
servers with many clients, infected computers (bots) engaged in
activities such as spam, denial-of-service, or portscanning. Much
of this traffic consists of small-volumed flows that have few pack-
ets per flow (“mouse” flows). Because techniques such as uniform
random sampling select more packets from heavy-hitter flows, they
will likely miss the presence of small-volume flows. Thus, these
conventional or “naive” sampling techniques are less appropriate
for these new monitoring applications.

There is need for a technique that can sample packets not just
from heavy-hitter flows (such as uniform random sampling), but
also from other traffic subpopulations: subsets of flows that have
some common property or behavior. To capture more packets from
certain subpopulations, the packet selection algorithm needs to ef-
ficiently determine whether a packet in the stream belongs to that
subpopulation and bias its sampling rate to ultimately capture more
or less traffic from the respective subpopulation. To accomplish this
goal, we presents FlexSample, a framework and technique to bias
packet selection towards certain subpopulations of traffic, subject
to an overall sampling constraint. FlexSample provides expressive-
ness and flexibility beyond naive packet sampling techniques used
by existing systems such as Cisco’s Sampled NetFlow [31]. The
key idea behind FlexSample is that high-speed network devices can
maintain approximate statistics using fast, space-efficient counters
to determine the subpopulation to which each packet belongs; these
counters can then be used to bias packet selection towards packets
that belong to desired subpopulations.

FlexSample allows an operator to specify the characteristics of
traffic subpopulations (e.g., packets from flows that have less than
10 packets, packets from a source IP address that has sent over
100 packets, etc.), as well as a sampling budget—the fraction of
the expected number of sampled packets obtained using the origi-
nal sampling rate—that is set apart for packets selected from each
subpopulation. FlexSample selects packets that belong to differ-
ent subpopulations at different instantaneous sampling probabili-
ties such that: (1) the overall expected number of packets selected
is equal to the expected number of packets selected by uniform
random sampling; (2) the fraction of sampled packets belonging

to each subpopulation are according to sampling budgets specified
by the operator. FlexSample meets both of these constraints using
counters maintained in fast memory (SRAM) that are updated at
every packet arrival.

Operators can specify traffic subpopulations FlexSample using
an expressive, simple configuration language using conditions that
are based on conjunctions of counter values. For example, con-
sider a source IP address srcip performing a portscan attack on
destination dstip. An operator who wants to capture more packets
that correspond to this behavior can specify a FlexSample condi-
tion for an artifact of scanning behavior observable in the packet
stream. For a portscan, FlexSample maintains two counters: the
first counter simply counts the tuple (srcip, dstip), i.e., the num-
ber of packets sent from srcip to dstip, while the second counter
counts the tuple (srcip, dstip, dstport) (i.e., the number of pack-
ets sent from srcip to dstip for the destination port on the cur-
rent packet). The condition for a packet to be identified as part
of a portscan could be, for example, “the first counter has a value
greater than 30 and the second counter has a value less than 2" (if
the attacker sends only one probe packet per destination port). This
condition will be matched for all but the first 30 packets; the subse-
quent will be sampled at a higher probability than they would using
naive sampling.

1.1 Design and Scope

Figure 1 presents the high-level design of FlexSample using the
portscan example above. FlexSample’s operation comprises two
stages: counting and sampling. In the counting stage, FlexSam-
ple looks up counters for certain sets of fields of the packet header
(called “tuples”). In the sampling stage, FlexSample uses the
counts and sampling budgets specified by the operator to calcu-
late an instantaneous probability at which the current packet is to
be sampled. The current packet is then sampled at that probability.

Scope. FlexSample captures more packets from certain subpopu-
lations by reducing the effective sampling rate for other traffic (in-
cluding packets from heavy-hitter flows). Although this reduction
typically increases the error in estimation flow sizes for heavy-hitter
flows (a common application for traffic engineering and account-
ing), we show in Section 7 that the additional error incurred over
naive sampling is typically small. Moreover, we expect that the net-
work operator will typically want to monitor small-volume flows
for short periods of time (e.g., during a spam or a DoS attack); in
this case, the extra error incurred on estimates of heavy-hitter flows
over the long term will be negligible.

FlexSample can preferentially select traffic subpopulations only
if the subpopulation’s characteristics can be expressed using tuple-
counts. Some subpopulation characteristics (e.g., time-shifted be-
havior, such as periodic probes) cannot be captured using tuple-
counts alone, and FlexSample will typically not be useful in this
scenario. However, as we show in Section 6, conditions on tuple-
counts are powerful enough for a variety of monitoring applica-
tions: FlexSample was able to capture many times more packets
from small-volume subpopulations such as portscans and botnet
“command-and-control” traffic.

1.2 Contributions

This paper presents the following contributions.

e A new framework that uses a small amount of fast memory to
preferentially select packets from small-volume traffic sub-
populations based on conditions that can be specified as con-
junctions of counter values, such that overall sampling con-
straints are always maintained. The framework represents a

258

Input Conditions

T i
wple_1 > 30 AND twple_2 < 5:Budget=0.5 CeeeCensaainyy

Overall Sampling Rate: 0.01
Everything else: Budget = 0.5 l

Sampling Budget Lookup Table
57575757 H Sampling Budget

for current packet

Calculate Instantaneous

Sampling Probability

Instantaneous count of
tuples in current packet

i Counting

tuple_1 Counter tuple_2 Counter

10.0.0.1-10.0.0.2-80 : 1

10.0.0.1-10.0.0.2 : 10 110
10.0.0.3-10.0.0.3-80 : 1|
1
1

10.0.0.1-10.0.0.3 : 31 Sample Packet
10.0.0.3-10.0.0.3-81 : o5 el

10.0.0.3-10.0.0.3-82 :

! probability
! Lookup / Update —
! counters for each Tuple Definitions
tuple tuple_1: srcip—dstip A
tuple_2: srcip—dstip—dstport| ! S 1i
Packet Stream @ (current packet) @
‘ srcip dstip srcport dstport ‘ ooe ‘
ees [10001] 10003 [30000 [82 [eee |

Figure 1: High-level design of FlexSample, showing the two
stages of the packet selection process. The counting stage in-
volves looking up (and simultaneously updating) counters ac-
cording to pre-specified tuple definitions. The specifications
also include the input conditions (here, the operator has allo-
cated 50% of the sampling budget to packets which match the
portscan rule). The sampling stage uses the tuple-counts to cal-
culate an instantaneous probability of sampling each packet.

decoupling of packet selection into a general two-stage ap-
proach. The first stage, counting, provides a coarse-grained
estimate for the desirability of any packet using a cheap,
fast computation (possibly using fast counters). The sec-
ond stage, sampling, combines the first-stage estimates with
physical constraints (e.g., storage space, line-speed, etc.) and
decides whether to select the packet.

e A simple, expressive configuration language that allows op-
erators to specify conditions to bias packet selection towards
certain subpopulations, and an array of counters that allows
on-the-fly updates of the conditions themselves.

e An implementation and evaluation of FlexSample on real
traces and several motivating applications.

Our evaluation also demonstrates that FlexSample’s flexibility
comes at a reasonable cost: it can capture higher fractions of cer-
tain “interesting” small-volume flows (such as bot traffic, super-
sources, or super-destinations), while simultaneously satisfying
more conventional traffic monitoring objectives, such as estimation
of heavy-hitter flow sizes.

The rest of the paper is organized as follows. Section 2 presents
an overview of the FlexSample algorithm. We describe FlexSam-
ple’s counting scheme in Section 3 and sampling algorithm in Sec-
tion 4. Section 5 discusses implementation details and practical
feasibility. Section 6 evaluates FlexSample on traffic traces from
the Georgia Tech network. We discuss FlexSample’s impact on
flow size estimation error in Section 7. Section 8 describes how
FlexSample can be extended to support different types of applica-
tions, or network operator needs. Section 9 presents an overview of
related work, and Section 10 concludes.

base sampling rate
sampling_rate = 0.01
number of tuples

tuples = 2
number of conditions
conditions = 1

tuple definitions
tuple_1 := srcip.dstip
tuple_2 := srcip.srcport.dstport
condition : sampling budget
tuple_1 in (30, oo] AND

tuple_2 in (0, 5]: 0.5

Figure 2: FlexSample input specification file for preferentially
sampling portscan packets. Lines beginning with ‘#” are com-
ments.

2. OVERVIEW

As Figure 1 shows, the FlexSample framework consists of: (1) a
language the operator can use to specify desired subpopulation
characteristics in terms of conditions on counts of tuples (Sec-
tion 2.1); (2) a set of counters that maintain up-to-date counts of the
tuples (Section 2.2); and (3) a sampling algorithm (and associated
data structures) that use counter values to decide which packets to
select from the input stream (Section 2.3).

Section 2.4 describes how traffic variability affects FlexSample.

2.1 Specification Language

FlexSample’s specification language defines: (1) the number of
tuples that must be counted, (2) the sets of header fields that consti-
tute each tuple, (3) conditions on tuple-counts, and sampling bud-
gets to be allocated to each.

Figure 2 shows a simplified input specification file for the
portscan example of Figure 1. The specification instructs FlexSam-
ple to count two tuples: (1) (srcip, dstip), which indicates the total
number of packets sent from source srcip to destination dstip, and
(2) (srcip, dstip, dstport), which indicates the number of packets
from srcip to the current packet’s destination port (dstport). The
final line of the specification provides the condition on tuple-counts
for the desired subpopulation. Conditions are written as conjunc-
tions of clauses, where each clause is of the form tuple € range;
in this case, the condition is: the count of packets from srcip to
dstip is at least 30, and the count of packets to the current packet’s
dstport is less than 5. The condition also has an associated sam-
pling budget—0.5 in this case—which implies that FlexSample
should tune packet sampling probabilities such that 50% of sam-
pled packets matched this condition.

Challenge. Notice that the conditions only specify the sampling
budgets for desired subpopulations; FlexSample must also compute
sampling budgets for packets that do not match any of the spec-
ified conditions. Even for the single condition in Figure 2, there
are four combinations of tuple ranges—there are two ranges for
each tuple—of which only one combination has an explicit sam-
pling budget specification. For combinations of tuple ranges with-
out explicitly specified budgets, the budgets must be deduced. In
addition, certain conditions may not contain range specifications
for all tuples (e.g., if the condition in Figure 2 had not specified a
range for tuple_2,ie., “tuple_1 in (30, ocol: 0.57);
in such cases, the subpopulation corresponding to the condition is
unaffected by (i.e., “dont-care”) the values of unspecified tuples.

Solution. FlexSample needs to quickly lookup the sampling bud-
get for every possible combination of tuple ranges at run-time.
Thus, in a pre-processing step, FlexSample converts the condi-
tions in the input specification into a data structure called the
sampling budget lookup table. The sampling budget lookup ta-

259

tuple_2
(0, 5] (5, o0]
= (0, 30] 0.167 0.167
%}
=
2 (30, o0] 0.5 0.167

Table 1: The sampling budget lookup table constructed using
the specification from Figure 2. The bold entry is an explicitly
specified budget while the italicized entries are deduced (using
Scheme 1: dividing the leftover sampling budget equally among
unspecified sampling classes).

ble is an m-dimensional structure (called m-D ARRAY)—where
m is the number of tuples—that contains a unique sampling budget
for every possible combination of tuple ranges. Each dimension
of the structure corresponds to one of the tuples being counted,
and the number of rows in a dimension is equal to the number
of mutually exclusive and exhaustive ranges for the tuple corre-
sponding to the dimension. More formally, suppose vi, ..., Um
are the m tuples and |vx| represents the number of mutually ex-
clusive and exhaustive ranges the tuple vy can have (deducible
from the input specification). Further, let T{,, 1y, s T(v;,|v;|+1)
be the set of disjoint ranges for tuple v; (where the first element,
T(v;,1)> 18 0 and the last element, T\, |v,;|+1), is 00). Then, the
entry b of the sampling budget lookup table indexed by the m
ranges (T, i1)> Teoris+1)] s (Twmim)s Lo, im+1)]) (Where
i < |uk;0 < k < m) would be the budget specified by the
condition:

tuple_1 in (T(v, i1y Lvy,i+1)) AND
tuple_2 in (T(vz,i2)7T(v2,i2+1)} AND

tuple_m in (Tlwmim)s Lom,im+1)] = b

We call these entries—each of which corresponds to a unique con-
junction of tuple ranges—sampling classes. Thus, the total number
of sampling classes is equal to the product of the number of dis-
tinct ranges for each tuple. The sampling budget lookup table is a
discrete density function in m dimensions, with each entry speci-
fying the target fraction of packets for one set of tuple ranges and
the total sum of all entries equalling 1.

Table 1 shows a 2-dimensional sampling budget lookup table
constructed from Figure 2. The bold entry corresponds to the sam-
pling class (i.e., the conjunction of tuple ranges) with an explic-
itly specified sampling budget; the remaining unspecified sampling
budgets are deduced using the constraint that the sum of all en-
tries in the sampling budget lookup table must equal 1. There are
two schemes for deduction: (1) divide the remaining unspecified
sampling budget equally among the unspecified sampling classes;
or (2) sample at the same probability from each unspecified sam-
pling class such that the total number of sampled packets from these
classes equals the remaining sampling budget (note that, in this
case, the remaining sampling budgets will not be divided equally).
Scheme 1 provides an equal number of sampled packets from each
unspecified sampling class, while Scheme 2 provides a uniform
random sample from packets that belong to any of the unspecified
sampling classes.

2.2 Subpopulation Counters

FlexSample maintains one counter per tuple; these are in-
cremented at each packet arrival'. The counters count “keys”

'As we sketch in Appendix A, as long as the counters are updated
at a higher rate than the overall sampling rate, FlexSample will still
be able to preferentially select packets from desired subpopulations
(albeit with higher error).

comprising concatenation of fields of the tuple (e.g., the tuple
(srcip, dstip) for a packet with srcip 10.1.1.1 and dstip 10.1.1.2
will be counted using the key “10.1.1.1-10.1.1.2”).

Challenges. First, because routers have limited fast memory,
FlexSample cannot precisely count each tuple and must use approx-
imate counters; the challenge is to achieve an acceptable tradeoff
between the accuracy of the counts and their memory consumption.
Second, because the entities being counted—packet header fields—
are representative of a dynamic traffic mix, the counter must some-
how age out stale counter values.

Solutions. To meet these challenges, FlexSample uses a counter
structure that consists of an array of Counting Bloom filters [16],
called a CBFArray. Counting Bloom filters (CBFs) are space-
efficient approximate counters that can be configured to meet an op-
erator’s accuracy or memory constraints. Our extension to CBFs—
the CBFArray—uses multiple CBFs in a configuration that allows
aging out stale counter values without requiring explicit timers per
counter entry. Section 3 presents the counter design in detail.

2.3 Preferential Sampling

After the counts of each tuple are retrieved and counters updated,
FlexSample makes a decision about whether to sample the current
packet or not based on an instantaneous sampling probability. The
probability calculation first determines the sampling budget allo-
cated to the current packet by looking up the budget corresponding
to the counts of input tuples obtained from the current packet.

Challenge. Calculating the instantaneous sampling probability re-
quires meeting two constraints: (1) The fractions of packets sam-
pled in each subpopulation must correspond to the operator’s sam-
pling budget specifications, which we call the local constraint, and
(2) The effective sampling rate (i.e., the fraction of all packets sam-
pled) must be equal to the naive sampling rate, or the global con-
straint.

Solution. The local constraint depends on the fraction of packets of
each subpopulation in traffic on the wire, which may fluctuate from
time to time. FlexSample’s challenge is to modulate instantaneous
sampling probabilities such that the two constraints above are al-
ways satisfied. FlexSample solves the problem using a bookkeep-
ing structure that keeps track of the instantaneous traffic mix, and
an intuitive algorithm to calculate instantaneous sampling proba-
bilities for each packet (Section 4).

2.4 Traffic Dependence

Varying fractions of subpopulations in traffic also presents chal-
lenges for FlexSample: (1) the sampling budgets an operator
chooses for a subpopulation may not always match the percent-
age of sampled packets that belong to the desired subpopulation;
(2) choosing sampling budgets to achieve a “good” sample of the
desired subpopulation requires knowledge of the actual traffic per-
centages of these subpopulations. We show how the first problem
can affect FlexSample in Section 6.1.1. Although the current de-
sign of FlexSample does not include solutions for either challenge,
we discuss potential solutions for these issues in Sections 8.1(a)
and 8.4, respectively.

3. COUNTER DESIGN

CBFs are widely used as approximate-matching memory-
efficient data structures that support both insertion and removal.
Well-understood derivations exist for calculating the number of
entries required, given the memory available and a target error
rate [16].

260

> >

Current /1 Every packet updates all CBFs
CBF 2. Current CBF is rotated after a
fixed number of packets

Figure 3: Staggered use of CBFs in the CBFArray. Shaded
regions indicates the extent to which a CBF has been “warmed”
with insertions/updates. The CBF with the longest history is
used for lookups at any time.

As Figure 3 shows, CBFs in the CBFArray are used in a stag-
gered fashion. For insertion, the key is added into every CBF: an
entry is created if one did not previously exist; otherwise, the count
of the entry is incremented. Although all CBFs are updated, only
the count from the oldest CBF is used for processing. Periodically
(where periods can be defined in terms of time or of packets seen),
FlexSample clears the CBF currently being used and begins using
the next CBF in the array; we call these periods epochs. This “rota-
tion” process allows FlexSample to efficiently expunge stale infor-
mation due to inactive or dead entries without maintaining timers
per entry. The epoch length, size of each CBF, resolution of each
counter in a CBF entry, and the number of CBFs in a CBFArray, all
depend on the characteristics of the tuples that are counted by the
CBFArray; as a rule-of-thumb, ROTATE is called when the current
CBF is near its capacity, or if the counts of entries in the CBF have
grown stale. The CBFArray parameters may also be tuned using
the FlexSample input specification file. Section 5.1 explains the
default CBFArray parameters we chose.

The CBFArray supports three simple functions: (1) LOOKUP,
which accepts a key—a concatenation of a set of fields in the packet
header—and returns the CBFArray’s appraisal of how many times
that key has been seen in the oldest CBF; (2) INCREMENT, which
accepts a key and increments the counters for the key in a// CBFs in
the array; and (3) ROTATE, which is called at the end of each epoch
and causes the CBFArray to flush the current CBF and update its
internal pointers to start reading from the next-oldest CBF.

In our current implementation, INCREMENT is typically called
as part of LOOKUP because lookups on the CBFArray occur only
when a packet with the specified key is seen in the packet stream,
which implies that the key will be inserted subsequently. All op-
erations are constant time and computationally cheap. Section 5.1
discusses the actual CBFArray implementation.

4. SAMPLING ALGORITHM

This section details the FlexSample packet selection algorithm
that meets the two constraints mentioned in Section 2.3.

4.1 Overview

When a packet arrives, FlexSample first performs a counter
lookup; the output of this step is an estimate of the count of each
tuple. The second step is determining the sampling class to which
the tuple-counts on the current packet correspond. Each sampling
class has an associated sampling budget that remains constant for a
particular input specification.

After determining the sampling class and budget for the current
packet, FlexSample must calculate the probability of sampling the
packet. This probability depends on both the sampling budget of

class CBFARRAY:
var Array of Counting Bloom Filters cbfarray
var Integer current_cbf
function LOOKUP(key):
let count = count for key from cbfarray[current_cbf]
call INCREMENT(key)
return count
function INCREMENT(key):
for each cbf in cbfarray
increment counters for key
end for
endfunction
function ROTATE():
clear chbfarray[current_cbf]
current_cbf = (current_cbf + 1) modulo (size of cbfarray)
endfunction
end class

Figure 4: Pseudocode for operations on CBFArrays.

the packet, and the instantaneous fraction of traffic that packets
of the sampling class account for. The instantaneous fraction of
future traffic that each sampling class accounts for cannot be pre-
computed, so FlexSample approximates these fractions using es-
timates based on past observations of traffic fractions. The past
observations of traffic fractions for each sampling class are then
combined with the latest observations using Exponential Weighted
Moving Average (EWMA) (with higher weight given to later esti-
mates) to obtain a prediction for the future traffic fractions of that
sampling class.

4.2 Details

Figure 5 presents the FlexSample procedure (Table 2 defines no-
tation). The FlexSample procedure maintains four data structures:
(1) m CBFArray counters, one corresponding to each tuple being
counted. These are queried for each packet, and the correspond-
ing counts, (c1,c2,...,cm), are returned; (2) An m-dimensional
array (similar to the sampling budget lookup table) to maintain the
running estimate of traffic fractions occupied by packets belong-
ing to each sampling class (f); (3) An m-D array to maintain the
instantaneous sampling probabilities for each sampling class (7);
(4) An m-D array to maintain the counts of packets belonging to
each sampling class in actual traffic (packets_per_sc). Finally, the
integer packet_count maintains a running counts of all packets seen,
in order to periodically trigger counter rotation.

Calculating the instantaneous sampling probability for each sam-
pling class is the key operation in the procedure. The insight in
calculating the instantaneous sampling probabilities is the follow-
ing: if the fractions of packets seen on the wire corresponding to a
sampling class i, fi, differs from the specified sampling budget for
packets in that sampling class (o), then the overall sampling rate,
s, must be scaled by the fraction S*.

Two operations are performed lperiodically: rotating counters
and re-calculating instantaneous sampling probabilities. Each pe-
riod is called an epoch, which can be measured either in terms of to-
tal packets seen or in terms of time elapsed. At the end of an epoch,
FlexSample performs the following maintenance operations.

(1) Rotating counters. CBFArray counters are rotated to age
out stale counter values. The epoch lengths for each CBFAr-
ray are typically different, depending on the nature of the tu-
ple being counted (e.g., a tuple consisting of just the source IP
address will likely have fewer entries than a tuple consisting of
(srcip, sreport, dstip, dstport)); the presented algorithm rotates

261

Notation Definition

s The original sampling rate (i.e., for naive ran-
dom sampling).

m The number of tuples (also called variables)
in the specification

V1, eeey Um Ordered set of the m tuples

|vi The number of exhaustive, disjoint ranges for

U4
The set of disjoint ranges for v;. The first ele-
ment (T, 1) is always 0 and the last element
(T, ,Jv; | +1) 1s always oo.

Two;,1)5 0 Ty o] +1)

CBFArrayli| The CBFArray structure that is used for
counting tuple v;

sc An abstract m-dimensional structure of size

T 1 lvs|, representing the mutually exclu-

sive, exhaustive set of sampling classes

sclet, ..y em) The sampling class to which a packet,
whose instantaneous tuple-counts — are
(c1,¢2,...,cm), belongs. Its entries range
from [0, [17", [vi]):

« The m-dimensional sampling budget lookup
table of size []" ; |vi] (i.e., |sc|)

; The sampling budget for a packet that be-

longs to sampling class @

f The m-dimensional traffic fraction lookup ta-
ble of size [T |v;] (i.e., |sc|)

fi The instantaneous estimate of the traffic frac-
tion of the sampling class 7.
Yi The instantaneous sampling probability for

sampling class 4.

Table 2: Summary of notation.

all CBFArrays together, but CBFArrays may also be rotated indi-
vidually.

(2) Re-estimating instantaneous sampling probability. Because
the traffic mix in the input packet stream is dynamic, the traffic
fractions of packets belonging to each sampling class may change.
Thus, FlexSample must periodically recompute the traffic fractions
of each sampling class; consequently, it must also recalculate the
instantaneous sampling probabilities for each class. While recom-
puting traffic fractions, FlexSample retains some amount of mem-
ory for past fractions such that short-lived changes in traffic mix
does not cause erratic updates to sampling probabilities, which
could result in an undesired mix of sampled packets. To obtain
the new table of traffic fractions, FlexSample uses an Exponen-
tial Weighted Moving Average (EWMA) on the latest and cumula-
tive past estimates of traffic fractions, with higher priority typically
given to the latest estimates. The intervals when FlexSample ro-
tates counters and recalculates sampling probabilities need not be
the same; in Figure 5, the operations are performed with the same
periodicity for simplicity.

S. IMPLEMENTATION

We implemented FlexSample in approximately 3,000 lines of
C++ code. We discuss design decisions for the counter implemen-
tation in Section 5.1, and for lookup tables in Section 5.2.

5.1 Counter Implementation

CBFArray, FlexSample’s counter structure, trades off space for
efficiency. CBFArrays consume more space than necessary because
there exist multiple copies of the same key among the elements
in the CBFArray (FlexSample performs inserts to all CBFs in a
CBFArray), but staggering multiple CBFs and periodically rotat-
ing through them expires inactive entries. This approach is more
efficient than a timer-based approach. First, timer interrupts over

procedure FlexSample:
// Using notation from Table 2
Input:
Packet stream; P
Set of the tuples to count; F'
Original sampling rate; s
Structure representing sampling classes; sc
Sampling budget lookup table; o
Maximum packets per epoch; pkts_per_epoch
Output:
Sampled Packets, the sampling class of each packet,
and the instantaneous sampling probability of each packet
Algorithm:
// Array of CBFArray counters, one for
// each input variable being counted
counters :=new 1-D ARRAY of type CBFARRAY of size m
// Structure representing instantaneous traffic
// fractions for each sampling class
f :=new m-D ARRAY
// Structure representing instantaneous sampling
// probabilities for each sampling class
v :=new m-D ARRAY
// Structure that counts the number of packets
//in an epoch that mapped to each sampling class
packets_per_sc := new m-D ARRAY
// To count packets in each epoch
packet_count := new INTEGER
// Initially assume equal traffic fractions for all sampling classes
set each entry of f to 1/|sc/,
the number of sampling classes
for each sampling class 7 in sc
set i = (a; x s/ f;
end for
set each entry of packets_per_sc to 0
for each packet p from stream P:
if packet_count++ > pkts_per_epoch
call ROTATE for each counter in counters
for each sampling class ¢ in sc
// Recalculate f using EWMA of current and past estimates
fi = EWMA (f;, packets_per_sc; /packet_count)
// Recalculate ~ using new values of f
vi = (o X 8)/fi
end for
set each entry of packets_per_sc to 0
set packet_count to 0
end if
let key[1..m] = keys constructed by concatenating
each set of fields in F’
let [c1, ..cm] = counts of each key, by looking up each key
key[1..m] in counters[1..m], in that order
let class = sc[c1, c2, .., Cm]
increment packets_per_sceiqss
sample packet p at probability v.;qss
end for

Figure 5: Definition of the FlexSample procedure. The m-D
arrays f, v and packets_per_sc have the dimensions of the sam-
pling budget lookup table o and are initialized to 0. The pro-
cedure EWMA accepts two floating point values and computes
an exponential weighted moving average on the values using a
pre-defined factor.

100KHz can potentially result in up to 45% overhead for the pro-
cessor merely in responding to interrupts [37]. Second, one timer
would be required for each entry in the counter; therefore, timer
updates must access every element in the counter.

In contrast, the staggered configuration of CBFs with periodic
rotation ensures that no entry that has been inactive for a period
longer than the time it takes to rotate all once through all CBFs

262

>30

<=30

>5

Figure 6: The sampling budget lookup table for Figure 2 rep-
resented as a binary decision diagram.

in the array will exist in any of the CBFs. Correct choice of the
number of CBFs and the CBF rotation condition (i.e., a time in-
terval or witnessing a certain number of packets) can reasonably
approximate timer expiry without its concomitant overhead. Rota-
tion based on number of packets seen is easier to implement and
can never overshoot the target number of CBF entries (because the
CBF will always be rotated after a fixed number of packets) even
at very high packet rates (e.g., during a DoS attack); therefore, we
use this scheme in our implementation.

Using the target CBF error rate and total SRAM available, we
can compute the overall number of entries the CBFArray can ac-
commodate using standard Bloom Filter calculations [16]. The
number of CBFs used in a CBFArray depends both on the nature of
the tuple being counted and its dynamism: if the number of unique
values the tuple can have is large, each CBF must accommodate a
larger number of entries. Similarly, if the tuple’s count is mean-
ingful only in the short term, the CBFs in the CBFArray must be
rotated quicker. Finally, the number of CBFs in a CBFarray decide
the fraction of the tuple’s count that is aged out at each rotation.

In our experiments, the default setting for a CBFArray uses 4
CBFs, each of which accommodates 100,000 entries with 0.01
error rate. Each entry in the CBF is a 1-byte counter, and
the largest memory footprint for this structure (measured by the
maximum resident set size of the program) was 5,156 KB. The
amount of memory consumed increases linearly with respect to
the number of entries the counter can accommodate. Because
CBFArrays are rotated every epoch, we set the epoch size to the
(number of entries) /(number of CBFs) packets, i.e., 25,000 pack-
ets. Because sampling probabilities are updated at the end of each
epoch, shorter epochs enable quicker updates and more traffic re-
sponsiveness. Longer epochs induce less updates but also consume
fewer resources.

5.2 Lookup Table

In our implementation, the m-dimensional lookup table entries
are represented as a linear array; thus, only the mapping of counter
values to ranges is non-trivial. FlexSample uses binary search to
quickly find the range corresponding to a tuple-count; thus, the
complexity of a lookup is logarithmic in the number of ranges for
a tuple. Lookups for each tuple count can be performed in parallel.

Maintaining multiple lookup tables also incurs memory over-
head. The memory consumed by each lookup table is proportional
to the product of the number of ranges for each tuple; thus, the
memory consumption could increase if the operator adds more tu-
ples or more ranges per tuple. However, each entry of a lookup
table is typically 4 bytes, and even a specification that has 4 tuples

each with 4 ranges consumes only about 1 kilobyte per table. More-
over, because a FlexSample specification typically reflects a small
set of subpopulations the operator wishes to monitor, it is unlikely
that a large number of tuples will be useful for a single specifica-
tion, or that tuples will have a large number of distinct ranges.

If memory is a bottleneck, FlexSample can eliminate lookup ta-
bles altogether and instead store only the conditions from the in-
put specification. In this case, the conditions and sampling budgets
would be stored in a balanced binary decision diagram (BDD). Fig-
ure 6 shows a BDD representation of the sampling budget lookup
table for Figure 2. Each internal node of the BDD would contain a
condition, and each leaf of the diagram would contain a sampling
budget. Using a balanced BDD, memory use is limited to the num-
ber of distinct conditions, but lookup time increases from constant
order to logarithmic in the number of conditions.

6. APPLICATIONS

We evaluate FlexSample in the context of three applications. Ta-
ble 3 lists these applications and the subpopulation definitions we
use for these applications. Section 6.4 presents other applications
that can use FlexSample as is or with little modification.

We compare FlexSample’s performance with naive uniform ran-
dom sampling (used by the popular Cisco Sampled NetFlow frame-
work) as the baseline. In all cases, FlexSample meets sampling
budgets for each class as well as the overall sampling rate?.

Subpopulation Applications Evaluation
Very low-volume flows, con- | (1) Identifying num- | Sec. 6.1
taining less than 10 packets ber of unique flows /

sources, (2) Identifying

email sending patterns
Servers with high indegree of | Identifying popular | Sec. 6.2
small flows botnet command-and-

control servers
Sources sending a large number | Identifying portscan at- | Sec. 6.3
of packets to a destination, with | tempts
only a few packets to any port

Table 3: Summary of the subpopulations we test FlexSample
with, and their applications.

6.1 Identifying Low-volume Flows

The communication patterns between groups of hosts often re-
veal important information about the behavior of applications and
their users. If these communications have many small-volume
flows, naive traffic sampling will fail to capture packets from these
flows. In contrast, FlexSample can be used to capture a larger num-
ber of these flows by allocating a portion of the sampling budget
(e.g., 50%) to sampling packets from flows that have not been ob-
served previously in traffic. Figure 7 shows an example input speci-
fication for this purpose®. The operator can tune the input condition
in two ways: (1) Change the range specification for the flow tuple:
increasing the range from (0, 1] to,say, (0, 10] will capture
fewer unique flows but can estimate the actual size of flows with
less error; (2) Change the sampling budget allocated to low-volume
Sflows: ahigher sampling budget for packets matching the condition
will result in more unique flows in the sampled output.

2We omit this evaluation as it follows from the FlexSample sam-
pling algorithm definition.

? Allocating 50% of the sampling budget to small “mouse” flows
will capture more packets than naive sampling only if the fraction
of mouse packets in the traffic is less than 50%.

263

Name | Description Period

Botnet | Packet captures of C&C traffic of | November 22, 2005
the Bobax botnet

Email | All traffic destined to port 25 | 7:30-10 AM, April 4,
(SMTP) from a campus border | 2006
router

CoC;y | Full packet captures from a de- | 12:40-1:40 PM, April
partment network with over 3000 | 15,2008
unique hosts

CoCs2 | Full packet captures from the de- | 12:40-1:40 PM, April
partment network containing a | 15,2008
emulated portscan

Table 4: Description of the various data traces we use in our
evaluation.

sampling_rate = 0.01

tuples = 1

conditions =1

tuple_1 := srcip.srcport.dstip.dstport.protocol
tuple_1 in (0, 1] 0.5

Figure 7: FlexSample input specification file for recovering
unique flows. 50% sampling budget is allocated to flows which
haven’t been seen before.

Section 6.1.1 evaluates FlexSample’s ability to capture low-
volume flows, and Section 6.1.2 shows how email sending patterns
obscured by naive sampling can be preserved with FlexSample.

6.1.1 Capturing unique flows

We evaluated the specification in Figure 7 on the CoC; trace (Ta-
ble 4), both for naive sampling and FlexSample. Figure 8 plots the
fraction of unique flows captured by FlexSample and naive sam-
pling. FlexSample captures fewer unique flows than naive sam-
pling with a sampling budget less than 0.4 allocated to the condi-
tion, because a large fraction (over 70%) of flows in CoC; have
exactly 1 packet. In this case, the instantaneous sampling proba-
bility allocated to these packets would be less than the fixed 0.01
sampling rate used by naive sampling. FlexSample steadily cap-
tures more unique flows on increasing the sampling budget over
0.4, with a budget of 0.9 capturing 46% more unique flows than
naive sampling. Moreover, the improvement over naive sampling
for the subpopulation of one-packet flows was almost 2.4 times.

An improvement of only 46% over naive sampling after allocat-
ing 90% sampling budget to low-volume flows may seem dispro-
portionate, but this occurs because the total number of unique flows
captured depends not just on the sampling budget, but also on the
traffic flow size distribution: if a significant fraction of flows in
the desired subpopulation are small-volume but have greater than 1
packet, allocating a budget of 0.9 to the condition in Figure 7 may
elicit less flows than with a budget of, say, 0.5. The reason is that,
with a 0.9 budget, if a flow of size greater than 1 is not selected
at the first packet (at a high instantaneous sampling probability),
all later packets in the flow will be sampled at a very low instan-
taneous sampling probability because only 10% of the sampling
budget is allocated to such packets. Thus, maximizing the number
of unique flows requires knowledge of the traffic mix; the optimal
setting may not always correspond to the highest allocation of sam-
pling budget to the first packet of each flow. We return to this issue
in Section 8.4.

‘ a) Unsampled

(b) Naive sampling

(c) F lemple

Figure 9: Communication graphs of single-packet email flows. Arrows point from email senders to mail servers.

-x-Naive
L | & Flexsample

o))

[$)]

N w &

Percentage of total flows

—_

o

0 0.2 0.4 0.6 0.8 1
Subpopulation sampling budget

Figure 8: Effect of sampling budget on the number of unique
flows captured with FlexSample. We compare the performance
of naive sampling with FlexSample.

6.1.2 Identifying email patterns

Spam and bulk email has surged over recent years, growing to
over 90% of traffic [40]. Recent studies have shown that studying
the sending patterns of email senders, such as domains they target,
can help distinguish spammers from legitimate senders [32]. While
this behavior can be gleaned from network traffic, naive traffic sam-
pling may often miss the behavior because SMTP transactions tend
to be small-volume (recent studies indicate that the average filesize
for spam is around 2 kilobytes [39], which would amount to very
few packets on the wire).

To see how naive traffic sampling affects email communication
patterns, we use the Email trace (Table 4) and analyze the commu-
nication between mail senders (i.e., client machines) and servers
graphically. To visually discern the effect of sampling on the graph,
we picked only those SMTP flows that consisted of only 1 packet—
the flows that are the easiest to miss—and constructed an unsam-
pled subgraph using these flows. Figure 9(a) shows this graph. Of
141,529 unique SMTP flows, 3,916 had just 1 packet.

Next, we performed naive sampling at a rate of 0.01 on the one-
packet SMTP flows. Of the 3,916, only 34 flows were in this set.
Figure 9(b) shows this graph. Finally, we applied FlexSample on
the Email trace with a sampling budget of 0.5. FlexSample sampled
224 out of 3,916 flows—almost 7 times the output of naive sam-
pling (Figure 9(c)). Comparing the graphs of naive sampling and

264

FlexSample, we see that FlexSample preserves information about
the key email senders who send email to multiple servers.

6.2 Identifying High-Degree Nodes

Servers with high fan-in or clients with high fan-out are also
of interest to an operator. Although popular servers that serve
large volumes of content may be detectable even with naive sam-
pling, that technique may not be effective at identifying high in-
degree servers whose flows are predominantly small-volume. For
example, botnet “command-and-control” (C&C) servers are high
in-degree nodes: they typically accept connections from many in-
fected machines, but because the data exchanged is mostly short
commands, these flows are usually small-volume. Detecting C&C
communication is important to a network operator to take action
against the C&C server or to enumerate potentially infected ma-
chines.

sampling_rate = 0.01

tuples = 2

conditions =1

tuple_1 := dstip.dstport

tuple_2 := srcip.dstip.dstport

tuple_1 in (1000, oo] AND
tuple_2 in (0, 10]: 0.9

Figure 10: FlexSample input specification file for recovering
unique flows from high-indegree servers. 90% of the sampling
budget is allocated to the first 10 packets in a flow that hit a
server which has already seen 1000 or more packets to the des-
tination port on the current packet.

Although configuring FlexSample to select unique flows will
work better than naive sampling for capturing botnet flows,
FlexSample’s configuration language can be used to tailor condi-
tions more suitable to the high in-degree property that C&C servers
exhibit. We use the specification in Figure 10 to preferentially pick
the first few packets from flows that target an already popular desti-
nation server/port combination. While the first clause of the condi-
tion may match any popular server/port that has received over 1000
packets, the second clause only matches the first 10 packets of a
new flow to the popular server/port.

To evaluate how well the condition captures unique flows to a
botnet C&C server, we generated a synthetic trace that contains
known botnet C&C traffic (the Botnet trace in Table 4) interspersed
within regular traffic (CoC; from Table 4). We had to mix the two

Botnet Packets | Botnet Flows
Total 303,238 78,356
Naive sampling 3,108 3,030
FlexSample (using Figure 7) 3,592 3,471
FlexSample (using Figure 10) 12,960 11,885

Table 5: Summary of botnet traces and results of evaluation
with various sampling methods. Base sampling rate was fixed
at 0.01 for all.

traces because we do not have packet traces for all traffic for the du-
ration of the botnet trace (or vice versa). When mixing Botnet with
CoCj, we used botnet data from the same day-of-week and time-of-
day as CoC; to minimize biases. We also marked the botnet C&C
packets in the mixed trace to allow us to identify them later. Table 5
summarizes the number of botnet packets and the number of unique
botnet flows in the mixed trace, and the effects of naive sampling,
FlexSample using the specification in Figure 7 (90% budget allo-
cated to the first packet), and FlexSample using the specification
of Figure 10 on these metrics. The high in-degree specification
outperforms both naive sampling and FlexSample configured to se-
lect only unique flows: it captures almost one-seventh of all botnet
flows.

6.3 Capturing Portscan Packets

In this section, we evaluate the portscan example presented ear-
lier in the paper (Figure 2). Portscans are typical precursors to
vulnerability exploits or DDoS attacks [33], and detecting them
quickly is crucial. Portscans come in many varieties, such as SYN
scans (scanning using SYN packets expecting SYN+ACK for lis-
tening servers, or RST packets in return), FIN scans (scanning us-
ing FIN packets expecting RST for non-listeners and no response
for listeners), and advanced techniques such as Idle scans [1] or
FTP bounce scans [2]. In all these cases, the key artifact of the
scan is a source that probes many ports on a destination using few
packets per destination port.

Due to lack of traces with real portscans, we conducted our own
portscan of a /24 subnet using the popular nmap tool [38]. We used
the TCP SYN “stealth” scan mode for our test that randomizes the
order in which target ports are scanned, and sends very few pack-
ets per second so as to not trigger alerts; this type scan would be
harder to detect using simple volume-based or sequential port num-
ber heuristics. The trace containing the portscan is marked CoCs in
Table 4. CoC> had over 116 million packets, of which only 0.044%
were portscan packets. We then evaluated the performance of naive
sampling and FlexSample (using specification in Figure 2) in ex-
tracting portscan packets in sampled traffic. As Figure 11 shows,
even at low budgets, FlexSample captures more portscan packets
than naive sampling; this fraction increases to 50% of portscan
packets using a high sampling budget, even for a 1-in-100 overall
sampling rate.

6.4 Other Applications
We briefly discuss a few additional applications of FlexSample

DDoS Detection Using Packet Lengths. FlexSample can use the
IP packet length field in tuple specifications to capture Distributed
Denial of Service (DDoS) packets. DDoS attacks are usually per-
formed by bots in the same botnet (running the same codebase),
where each bot is performing a type of flooding attack (e.g., TCP
SYN flood, UDP Flood, HTTP request flood, etc.). Because flood-
ing attacks correspond to sending many packets with the same pay-
load, packet lengths may be the same for all DDoS packets. A

265

-x-Naive
| |=©-Flexsample

o
&)

N
'S

Fraction of port scan pkts
o
w

0.2
0.1
¥mmmmmmmmm - m - ¥mmmmmmmmmmmm - - =X
0 . . .
0 0.4 0.6 0.8 1

0.2
Subpopulation sampling budget

Figure 11: Comparison of FlexSample and naive sampling on
portscan packet extraction, with varying sampling budgets al-
located to the portscan condition.

specification that exploits this artifact of DDoS attacks is shown
in Figure 12. This specification allocates greater sampling budget
for packets from sources that: (1) are hitting a very popular TCP
server/port, (2) have sent at least 500 packets of the same size to
the server/port.

sampling_rate = 0.01
tuples = 2
conditions =1
tuple_1 := dstip.dstport.tcpsyn
tuple_2 := srcip.dstip.dstport.pktlen
tuple_1 in (10000, oo] AND

tuple_2 in (500, oo] : 0.5

Figure 12: FlexSample input specification file for preferentially
sampling DDoS packets exploiting the commonness of packet
length among DDoS packets.

Identifying Heavy-Hit IP Ranges. Many popular servers (e.g.,
Web servers such as myspace . com) are load-balanced using mul-
tiple IPs within the same netblock (usually a /24). In such setups,
each individual server may not be popular enough on its own, while
together, they account for a significant fraction of flows. An opera-
tor can identify such popular netblocks by applying a simple modi-
fication to the high-degree server identification: instead of dstip in
the specification of Figure 10, he can use the first 24 bits of dstip,
which is common to all load-balanced servers in a /24 netblock.

7. FLOW SIZE ESTIMATION ACCURACY

Although network operators may wish to monitor small-volume
subpopulations, their primary use for sampled traffic is to estimate
the flow sizes of heavy-hitter “elephant” flows accurately [10, 17].
Thus, FlexSample must not incur such high error in flow size esti-
mation of elephant flows over naive sampling such that operators’
primary objective may be compromised.

Estimating actual flow-sizes for naive sampling involves scaling
up the number of packets per flow in sampled output using the fixed
base sampling rate. In contrast, because FlexSample uses different
sampling probabilities for each packet, we also output, with each
sampled packet, the probability at which it was sampled. Based
on this probability, we can compute an estimate of the actual flow
size. Our approach in computing flow size estimate is similar in
spirit to [26]. We compute the flow size estimate, S (f), of flow f

Fraction of flows

107 107"
Rel. estimation error

Figure 13: CDF of the absolute value of the relative estimation
error incurred by individual flows with FlexSample and with
naive sampling. With FlexSample, 70% of the sampling budget
is allocated to the first packet of each flow.

with n(f) packets, where packet ¢ was sampled at a rate r(4) as

n(f)

i=1

Flow size estimation incurs some estimation error in extrapo-
lating the sampled flow size to the original flow size. For naive
sampling, this error for a flow f of actual size S(f) is

S(f) =85
S(F)

Figure 13 shows the cumulative distribution of the absolute val-
ues of relative estimation error incurred per flow, both for FlexSam-
ple and naive sampling, using the CoC; trace. The FlexSample ex-
periment used the specification of Figure 7, with 70% of the total
sampling budget allocated to small-volume flows. We plot the es-
timation error for flows of size greater than 1,000 packets, as they
contribute to over 40% of the overall traffic volume. The estimation
error incurred for these flows is almost the same for both FlexSam-
ple and naive sampling. For 80% of these flows, the increase in es-
timation error incurred by FlexSample, in comparison to naive sam-
pling, is less than 9%. Even when 90% of the sampling budget is
allocated to small-volume flows, we see that the increase in estima-
tion error incurred by FlexSample, for 80% of the flows, is within
30%. This shows that FlexSample captures more unique flows with
modest increase in estimation error for heavy-hitter flows sizes.

Error (f) =

8. DISCUSSION

In this section, we discuss practical issues in deploying FlexSam-
ple (Section 8.1 and Section 8.2), and how FlexSample may be con-
figured to emulate “smart” sampling algorithms such as sample-
and-hold [15] (Section 8.3). Section 8.4 discusses how traffic dy-
namism affects FlexSample, and how FlexSample can automati-
cally compute sampling budgets to mitigate its traffic dependence.

8.1 Practical Issues

We discuss four issues: reducing noise in sampled packets,
increasing the portability of specifications using join variables,
clauses using static matches, and an extension to FlexSample that

266

Packet
Stream

FlexSample

Input
Specification

Sampled Packets

Subpop. 1 Subpop. 2
Feedback
Collector Deep

Packet
Inspection

Network Operator /

Automatic System .
Noise

Refine
Input
Conditions

Actual
Subpop. 2

Discard

Figure 14: To reduce noise in sampled packets of Subpopula-
tion 2, an operator can tune the conditions and tuple ranges in
the input specification using feedback from a deep packet in-
spection device.

allows network-wide coordination between different FlexSample
instances.

a. Reducing noise in sampled packets. As our evaluation in Sec-
tion 6.1.1 showed, conditions based on tuple counts have inherent
error: (1) some packets of a desired subpopulation may not match
the condition for the subpopulation, and (2) packets of other sub-
populations (“noise”) may match the condition and waste its bud-
get. FlexSample cannot automatically filter this noise because it
observes a packet only in terms of tuple counts; typically, the sam-
pled packet’s contents must be inspected to determine whether it
belongs to the sought subpopulation.

To reduce noise within sampled packets of a subpopulation, the
operator must refine the input specification (e.g., by tweaking the
ranges of tuple counts, adding new conditions, etc.). To determine
the tweaks, he could inspect a full packet trace to identify the ranges
of tuples that best distinguish the desired subpopulation from other
packets. However, obtaining a full packet trace on a high-speed
link may not be feasible (indeed, this is why operators must resort
to traffic sampling). Alternatively, the operator can use a system as
in Figure 14: the operator shunts packets sampled as Subpopulation
2 through a deep packet inspection (DPI) device that authoritatively
identifies packets that actually belong to Subpopulation 2. The op-
erator can then refine input conditions—either manually or using an
automatic system—for the next epoch. Because DPI is performed
only on a portion of sampled traffic, its complexity does not affect
the rest of the sampling process.

b. Join variables. The problem of deciding correct ranges for tu-
ples is exacerbated in practice because the tuple ranges that work
well to capture a particular subpopulation (e.g., portscan packets)
on one network may include many false positives when used on
another network. To mitigate this problem, the FlexSample config-
uration can be modified to use variables instead of fixed numbers
for ranges. The variables act as “join” keys between various clauses
in a condition. For example, Figure 15 shows the condition of Fig-
ure 12 using the join variable p: the condition now specifies that a
destination receives p connections, out of which a significant frac-
tion is due to equal-length packets originating from the source IP on
the packet currently under inspection. The shown condition places
no lowerbound on the value of p; if the lack of a lowerbound causes
false positives, a clause such as p in (500, oco] may also be
appended to the condition.

c. Static Conditions. Although the power of the FlexSample
language is in capturing subpopulations based on behavior, static
matches can also be used as clauses. For example, if the opera-
tor knows that DDoS sources are targeting only Web servers, he

tuple_1 in (p,
tuple_2 in

co] AND
((p/20),

oco] ¢+ 0.5

Figure 15: The condition of Figure 12 updated to include a join
variable p.

can add an extra clause to the condition of Figure 12 such that the
condition will match only if dstport is equal to 80.

d. Network-Wide Monitoring. cSamp [35] takes a network-wide
view of sampling: it uses uniform hashing functions on flow tuples
on all routers in a network but requires each router to sample flows
based on disjoint hash ranges. Thus, in cSamp, multiple routers
that see the same flow will not duplicate sampling effort, with-
out explicit communication. Although FlexSample is primarily a
packet selection technique from a single router’s perspective, be-
cause FlexSample uses the hashed counters, it can also benefit from
a scheme such as cSamp. For example, if each router’s counters
only count the tuples that hash to disjoint ranges, different routers
can monitor the same subpopulation without sampling duplicates.

8.2 Feasibility of a Hardware Implementation

Compared to conventional sampling techniques, FlexSample re-

quires: (1) a significant amount of fast memory (SRAM); and
(2) the ability to compute packet hashes at near-line speeds. We of-
fer arguments as to why both requirements are reasonable, at least
for today’s high-end routers and network devices.
SRAM limits. SRAM on routers can be on-chip or off-chip. Ac-
cording to Varghese ([37, page 441]), on-chip SRAM has latencies
below 5ns, and is limited to about 64 megabits. Off-chip SRAM
can provide higher capacities at slightly higher latencies. In our ex-
periments, the maximum memory used by the CBFArray structure
was less than 6 MB, which is well within the SRAM limits in 2004
when Varghese reported the trend.

In 2001, Sanchez et al. introduced a technique of storing large
lookup data structures using limited fast memory (SRAM) for fre-
quently accessed data and expansive slow memory (DRAM) for
storing data that is not currently used [34]. Data is transferred to
and from the DRAM in bulk, but not often enough to cause a perfor-
mance bottleneck. A slight modification to the CBFArray structure
allows it to use this paradigm, guaranteeing constant SRAM usage
for any number of CBFs. Recall from Section 3 that only the CBF
with the longest history from the CBFArray is used for lookups
at any time, while the rest are merely “warmed”. Thus, FlexSam-
ple could store only the CBF that is currently being looked up in
SRAM. Because the same insertions are applied to all CBFs in the
array in any one epoch, we merely need some additional memory
(less than the size of 1 CBF) in SRAM to record the insertions that
happened in the current epoch; these can be applied all at once to
the next CBF in sequence when it is brought in to SRAM at the end
of the current epoch.

Hashing at line speeds. There are two issues to consider: (1) How
feasible is hashing every packet, and (2) If not every packet is
counted, how much does the accuracy of estimating the counts of a
tuple degrade?

Fast Hashing. Bloom filters use multiple independent hash func-
tions to reduce chances of conflict. The exact number of functions
required to query or insert a key into a Bloom filter is dependent
on the size of the filter and the target error rate; in our case, for
a size of 100,000 entries and target error rate of 0.01, FlexSample
requires 7 hash functions.

Although our evaluation uses a software implementation of the

267

SHA-1 hash that is difficult to compute quickly in hardware [36],
in theory, any universal hash function would suffice for the CBE.
Recent research has shown that hardware implementations of the
linear congruential hash (LCH) universal hash function have a
throughput of over 10 Gbps [42].

Hashing fewer packets. FlexSample counts tuples by computing
hashes over keys formed by concatenating tuple fields from the
packet. We call the ratio of the number of packets hashed to the to-
tal number of packets seen as the hashing rate k. For the classifica-
tion to yield meaningful information, k& > s (the sampling rate) *.
k is set to 1 in our experiments. Fast hashes over well-defined
bytes of a packet can be performed at very high speeds [42] (mak-
ing hashing every packet practical), but even if the counter cannot
examine every packet, we present an argument in Appendix A. that
the classifier should still perform well.

8.3 Emulating Other Sampling Algorithms

Estan et al. proposed sample-and-hold as a method to provide in-
creased estimation accuracy for high-volume flows over naive sam-
pling [15]. Their algorithm functions similar to naive sampling at a
fixed probability, but whenever a packet of a certain flow has been
sampled, all further packets from the flow are selected determin-
istically (i.e., no sampling). To do so, they use in-memory data
structures similar to FlexSample.

sampling_rate = 1.0

tuples =1
conditions =1
tuple_1 := srcip.srcport.dstip.dstport.protocol

tuple_1 in (1, oo] 1.0

(a) Specification 1

sampling_rate = 0.01

tuples =1

conditions =1

tuple_1 := srcip.srcport.dstip.dstport.protocol

tuple_1 in (0, oo] 1.0

(b) Specification 2

Figure 16: FlexSample input specification files that emulate the
sample-and-hold algorithm.

Because of the additional “always-pick” condition, total number
of packets selected by sample-and-hold may often exceed the total
number of packets selected by naive sampling. Because FlexSam-
ple never exceeds the allotted sampling budget, a single instance
of FlexSample will not be able to emulate sample-and-hold. We
can, however, emulate sample-and-hold using two FlexSample in-
stances, each with different specifications. Figure 16 shows these
specifications. The two FlexSample instances are chained using a
condition: Specification 1 is applied first to each packet, and Spec-
ification 2 is applied on the packet only if Specification 1 is not
matched (i.e., if the packet was not selected using Specification 1).
Because the two specifications share the same counter, there is no
extra memory overhead.

These examples show that FlexSample’s configuration language
is powerful and can be adapted to meet a variety of requirements.

8.4 Choice of Sampling Budgets

Operators ultimately want to sample enough packets of each sub-
population to obtain a representative sample of the subpopulation.

“Note that if k < 1, the packets that get looked up must be sampled
at an overall rate of s/k to maintain the total sampled traffic size.

This goal has two requirements: (1) The condition(s) specifying a
subpopulation must match a large fraction of packets of that sub-
population and few packets of other subpopulations (i.e., few false
positives and false negatives); (2) The sampling budgets chosen for
each subpopulation must neither be too high nor too low.

We already discussed the first requirement in Section 8.1(a). The
second requirement is also important: if the desired subpopulation
occupies a small fraction (e.g., 0.01) of all traffic, even a high sam-
pling budget (e.g., 0.9) may not capture enough packets to fill the
budget. Thus, the budget of 0.9 will never be completely used lead-
ing to wasted budget (for other subpopulations). In our current im-
plementation, operators have to guess static budgets a priori, but
optimal budget choice requires knowledge of the actual (i.e., fu-
ture) fractions of the subpopulation, and dynamic adjustment of
sampling budget based on these fractions. In spite of this limita-
tion, in our evaluation, we were able to capture enough packets
from desired subpopulations with small changes to the conditions
or budgets; we believe an operator would be able to arrive at the
correct settings in a few tries as well.

In future work, we plan to explore the following alternatives: (1)
Always Select k: Instead of using an instantaneous sampling proba-
bility to select each packet, we always pick the first k; packets from
each subpopulation ¢, where k; is the expected number of sampled
packets that belong to subpopulation ¢ (i.e., subpopulation i’s per-
epoch sampling budget). For the remaining packets of subpopula-
tion ¢, we select a packet with a probability inversely proportional
to the index of the packet, and we randomly replace one of the
chosen k; packets with the selected packet. This scheme ensures
that even if the fraction of packets belonging to a subpopulation
are much lower than the budget for that subpopulation, all such
packets will be deterministically selected. Others have also found
that deterministically selecting the first few packets of a connection
typically retains the most interesting part of the connection [30].
(2) Dynamic Sampling-Budget Scaling: Instead of rigidly fixing
sampling budgets for each subpopulation at the first epoch, we will
allow sampling budgets to vary (within upper and lower bounds)
such that unused (or unneeded) budgets for some subpopulations
can be allocated to subpopulations that need larger budgets. For
example, if a subpopulation occupies 99% of traffic and has 50%
of the budget, decreasing its budget to 45% will likely not affect
the statistical significance of sampled packets of the subpopulation,
while the freed 5% budget can be used to improve packet selection
for a smaller subpopulation. Dynamic Sampling-budget Scaling
can also be used in coordination with the Always Select k& scheme.

9. RELATED WORK

FlexSample draws on a large body of previous work in fast
statistics counters and various types of packet sampling techniques.
We survey common packet and flow sampling techniques in Sec-
tion 9.1, and review previous work on traffic monitoring appli-
cations (such as anomaly detection and traffic classification) and
frameworks (such as ProgME [43]) in Section 9.2.

9.1 Sampling Techniques

Random Sampling. Traffic monitoring on high-speed links is typ-
ically performed with techniques such as Cisco’s NetFlow [31], Ju-
niper traffic sampling [21], or InMon sFlow [20]. Because these
techniques incur both high processing and collection overhead,
routers typically employ packet sampling on high-speed links.
Sampled schemes (e.g., Sampled NetFlow) observe only a fraction
of all packets that traverse the link; summaries it exports reflect
only the statistics of the sampled traffic.

Packet sampling inspects every nth packet—either deterministi-

268

cally or at random—and continuously records statistics associated
with the sampled packet’s header in a local router cache until either
a configured timeout value is reached or the cache is full, at which
point the cache is flushed to a collector. Stratified sampling—a
variant of random sampling—divides traffic into equal-length strata
and selects packets randomly from within the strata at a particular
sampling rate [46]; this approach resembles FlexSample’s division
of traffic into subpopulations.

Flow sampling [18], in contrast with packet sampling, selects
flows with some probability and retains all packets from selected
flows. While flow sampling avoids the bias against mice flows ob-
served with packet sampling, it is resource-intensive because all
packets have to be assigned to flows before a sampling decision is
made; hence, it is difficult to deploy in high-speed routers.
Size-Based Sampling. Size-dependent sampling has been pro-
posed in two related contexts before: flow sampling and packet
sampling. Size-dependent flow sampling deals with storage con-
straints on routers in cases where only a certain fraction of flow
records can be retained; in this context, Duffield et al. proposed
to sample and retain flow records with probability related to the
original flow size [12, 13].

FlexSample’s packet selection scheme is similar to sketch-guided
sampling (SGS) [26], which samples packets with a probability dis-
tribution that depends on the size of the flow to which the packet be-
longs. That work develops a general theory for how such sketches
might be constructed and serves as the basis for the high-level
FlexSample design. FlexSample extends SGS by showing how such
an approach can help network operators capture specific subsets of
the traffic distribution on the fly with a simple set of tunable param-
eters. In particular, the sketch-guided sampling proposal focused
on a different class of problems (e.g., tracking elephants) and did
not provide tunable parameters for capturing post facto fractions of
low-volume subpopulations.

In an earlier work, Kumar ef al. focused on combining flow
records of sampled traffic with an approximate counts of traffic
streaming through the observation points to generate estimates of
flow statistics [25]. They extend this estimation to target only a
subpopulation of the total flows, using value-based filters. Their
motivation is to accurately infer flow sizes from previously gener-
ated flow records of sampled traffic. FlexSample, on the other hand,
is concerned with online biasing of packet sampling.

9.2 Inference and Tracking

Inference of traffic statistics. Previous work has devised meth-
ods to recover traffic statistics from sampled flow records with
much success. Claffy et al. studied various sampling tech-
niques at both packet-based and time-based granularities [8]. Oth-
ers have attempted to improve sampling accuracy for estimat-
ing “heavy hitters”, flow size distributions, traffic matrices, or
packet flow arrivals for accounting, traffic engineering, or provi-
sioning [7, 11, 14, 15, 18, 23, 24, 44]. Previous research has also
investigated how to achieve effective coordination across multiple
traffic monitors to improve network-wide flow monitoring [6, 35].
These techniques adapt the sampling rate to changes in flow char-
acteristics, attempt a different sampling strategy altogether, or ap-
ply network-wide constraints, typically to draw inferences about
flow size distributions from sampled traffic statistics. In contrast,
FlexSample uses a statistics counter to control the sampling process
itself to solve a broader class of problems (e.g., monitoring botnets,
recovery of traffic structure, etc.).

Although we present a novel counter architecture and sampling
algorithm in this paper, FlexSample is not tied to either. Thus, oper-
ators can gain advantage from recent advances in efficient counter

architectures (e.g., Counter Braids [27]), or choose to use sampling
algorithms that respect constraints other than the ones described in
this paper (e.g., Adaptive Netflow [14] for surviving DoS attacks).
Application tracking and anomaly detection. Sampled traffic
statistics have also been used to help operators detect malicious
traffic [3,4,41], and many previous studies have demonstrated the
utility of using sampled flow statistics for detecting high-volume
attacks and malicious traffic [3, 14, 19, 45]. However, more recent
work has demonstrated that conventional sampling techniques can
obscure statistics needed to detect traffic anomalies [5] or execute
certain anomaly detection algorithms [29]. Traffic classification
studies have also used network communication structure to iden-
tify attack traffic [22,41]. FlexSample can further assist these tech-
niques by allowing them to focus on specific flow size ranges (e.g.,
mouse flows).

Monitoring Frameworks and Languages. ProgME [43], an
application-oriented flow monitoring framework, operates on ar-
bitrary compositions of flows (called flowsets) that can be logically
composed using a powerful composition language. ProgME’s no-
tion of a flowset is a generalization of FlexSample’s tuple concept,
but FlexSample’s advantage is in showing how tuples can be com-
bined using conditions that reflect a specific subpopulation’s char-
acteristics, in order to bias monitoring in the subpopulation’s favor.
PSAMP [9] is an IETF working group that is concerned with draft-
ing a framework for allowing configurability in selecting, summa-
rizing, and exporting statistics. Madhyastha et al. have constructed
a language for efficiently filtering flow records generated by a flow
collector [28]. While their work uses templates for extracting flow
statistics from sampled traffic, FlexSample’s specification language
is used to drive the packet sampling process itself.

10. CONCLUSION

Most existing high-speed traffic monitoring techniques allow op-
erators to perform conventional tasks, such as tracking “heavy hit-
ter” flows for traffic engineering or billing. Given evolving threats
and applications, however, network operators have an increasing
need to sample specific traffic subpopulations based on a flexible
specification. Towards this goal, this paper has presented the de-
sign, implementation, and evaluation of FlexSample, a new frame-
work and system for monitoring traffic that allows a network oper-
ator to skew sampling rates towards a particular range of the traffic
distribution. FlexSample allows an operator to extract traffic sub-
populations based on conjunctions of conditions that can be speci-
fied in terms of packet header fields, subject to an overall sampling
constraint.

In this paper, we offer three new contributions. First, we present
anew framework that decouples counting from sampling and uses a
small amount of fast memory to guide the sampling of traffic from
specific subpopulations. Second, we present a simple, expressive
configuration language that allows operators to specify these sub-
populations. Finally, we present the design and implementation of
FlexSample and its use for several applications (capturing unique
flows, high-degree nodes, and portscans). In each case, we show
that FlexSample can capture significantly more of each of these
subpopulations, at the cost of an acceptable increase in error rates
for “conventional” traffic monitoring applications such as estimat-
ing traffic flow size distributions.

Acknowledgements

This work was supported by an NSF CAREER award CNS-
0633974, and by NSF Cybertrust awards NSF CNS-0721581 and
NSF CNS-0831841. We thank Russ Clark and David Dagon for

269

the traces used in our analysis, and Anukool Lakhina for many in-
spiring discussions that laid the groundwork for this paper. We
also thank the anonymous reviewers and Muhammad Mukarram
Bin Tariq for comments that helped improve the paper.

REFERENCES

[1] Idle-scanning and Related IPID Games.
http://nmap.org/idlescan.html.

Original posting describing FTP bounce scan.
http://nmap.org/hobbit.ftpbounce.txt.

Arbor Networks. http://www.arbornetworks.com.

P. Barford, J. Kline, D. Plonka, and A. Ron. A Signal Analysis of
Network Traffic Anomalies. In Proc. ACM SIGCOMM Internet
Measurement Workshop, Marseille, France, Nov. 2002.

D. Brauckhoff, B. Tellenbach, A. Wagner, A. Lakhina, and M. May.
Impact of Traffic Sampling on Anomaly Detection Metrics. In Proc.
ACM SIGCOMM Internet Measurement Conference, Rio de Janeiro,
Brazil, Oct. 2006.

G. Cantieni, G. Iannaccone, P. Thiran, C. Barakat, and C. Diot.
Reformulating the monitor placement problem: Optimal
network-wide sampling. Intel Research Technical Report, Feb. 2006.
B.-Y. Choi and S. Bhattacharyya. On the Accuracy and Overhead of
Cisco Sampled NetFlow. In Proceedings of ACM SIGMETRICS
Workshop on Large Scale Network Inference (LSNI), June 2005.

K. C. Claffy, G. C. Polyzos, and H.-W. Braun. Application of
sampling methodologies to network traffic characterization. In Proc.
ACM SIGCOMM, pages 194-203, San Francisco, CA, Sept. 1993.
N. Duffield. A Framework for Packet Selection and Reporting. IETF
Internet Draft draft-ietf-psamp-framework-12.txt, June 2007.

N. Duffield, C. Lund, and M. Thorup. Charging from Sampled
Network Usage. In Proc. ACM SIGCOMM Internet Measurement
Workshop, San Fransisco, CA, Nov. 2001.

N. Duffield, C. Lund, and M. Thorup. Estimating flow distributions
from sampled flow statistics. In Proc. ACM SIGCOMM, pages
325-336, Karlsruhe, Germany, Aug. 2003.

N. Duffield, C. Lund, and M. Thorup. Predicting Resource Usage and
Estimation Accuracy in an IP Flow Measurement Collection
Infrastructure. In Proc. ACM SIGCOMM Internet Measurement
Conference, pages 179-191, Miami, FL, Oct. 2003.

N. Duffield, F. L. Presti, V. Paxson, and D. Towsley. Inferring Link
Loss Using Striped Unicast Probes. In Proc. IEEE INFOCOM,
Anchorage, AK, Apr. 2001.

C. Estan, K. Keys, D. Moore, and G. Varghese. Building a Better
NetFlow. In Proc. ACM SIGCOMM, Portland, OR, Aug. 2004.

C. Estan and G. Varghese. New directions in traffic measurement and
accounting: Focusing on the elephants, ignoring the mice. ACM
Transactions on Computer Systems, 21(3):270-313, Aug. 2003.

L. Fan, P. Cao, J. Almeida, and A. Z. Broder. Summary cache: A
scalable wide-area Web cache sharing protocol. In Proc. ACM
SIGCOMM, pages 254-265, Vancouver, Canada, Sept. 1998.

A. Feldmann, A. Greenberg, C. Lund, N. Reingold, J. Rexford, and
F. True. Deriving Traffic Demands for Operational IP Networks:
Methodology and Experience. IEEE/ACM Transactions on
Networking, 9(3):257-270, June 2001.

N. Hohn and D. Veitch. Inverting sampled traffic. In Proc. ACM
SIGCOMM Internet Measurement Conference, Miami, FL, Oct.
2003.

Y. Huang and J. Pullen. Countering Denial of Service Attacks using
Congestion Triggered Packet Sampling and Filtering. In Proceedings
of International Conference on Computer Communications and
Networks, pages 490-494, 2001.

InMon sFlow. http://www.inmon.com/technology.
Juniper traffic sampling and forwarding overview. http: //www.
juniper.net/techpubs/software/junos/junos71/
swconfig7l-policy/html/sampling—overview.html.
T. Karagiannis, K. Papagiannaki, and M. Faloutsos. BLINC:
multilevel traffic classification in the dark. In Proc. ACM SIGCOMM,
pages 229-240, Philadelphia, PA, Aug. 2005.

R. Kompella and C. Estan. The Power of Slicing in Internet Flow

[2]

[3]
[4]

[5

[ty

[6]

[7]

[8

—

[9

—

[10]

(11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]
[21]

[22]

[23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

(371

[38]

[39]

Measurement. In Proc. ACM SIGCOMM Internet Measurement
Conference, Berkeley, CA, Oct. 2005.
A. Kumar, M. Sung, J. Xu, and J. Wang. Data streaming algorithms

for efficient and accurate estimation of flow size distribution. In Proc.

ACM SIGMETRICS, pages 177-188, New York, NY, June 2004.
A. Kumar, M. Sung, J. Xu, J. Wang, and E. W. Zegura. A Data
Streaming Algorithm for Estimating Subpopulation Flow Size

Distribution. In Proc. ACM SIGMETRICS, Banff, Canada, June 2005.

A. Kumar and J. Xu. Sketch Guided Sampling — Using On-Line
Estimates of Flow Size for Adaptive Data Collection. In Proc. [IEEE
INFOCOM, Barcelona, Spain, Mar. 2006.

Y. Lu, S. Dharmapurikar, A. K. Kabbani, A. Montanari, and

B. Prabhakar. Counter Braids: An Efficient Minimum-Space
Statistics Counter Architecture. In 7o appear in the Proceedings of
ACM SIGMETRICS, June 2008.

H. V. Madhyastha and B. Krishnamurthy. A Generic Language for
Application-Specific Flow Sampling. ACM Computer
Communication Review, 38(2), April 2008.

J. Mai, C.-N. Chuah, A. Sridharan, T. Ye, and H. Zang. Is Sampled
Data Sufficient for Anomaly Detection? In Proc. ACM SIGCOMM
Internet Measurement Conference, Rio de Janeiro, Brazil, Oct. 2006.
G. Maier, R. Sommer, H. Dreger, A. Feldmann, V. Paxson, and

F. Schneider. Enriching Network Security Analysis with Time Travel.

In Proc. ACM SIGCOMM, Seattle, WA, Aug. 2008.

Cisco NetFlow.
http://www.cisco.com/en/US/products/ps6601/
products_ios_protocol_group_home.html.

A. Ramachandran and N. Feamster. Understanding the network-level
behavior of spammers. In Proc. ACM SIGCOMM, Pisa, Italy, Sept.
2006. An earlier version appeared as Georgia Tech TR
GT-CSS-2006-001.

H. Ringberg, A. Soule, and M. Caeser. Behavior Of Bots In Traffic
Traces. Technical report, Princeton University, 2008. Number
forthcoming.

L. A. Sanchez, W. C. Milliken, A. C. Snoeren, F. Tchakountio, C. E.
Jones, S. T. Kent, C. Partridge, and W. T. Strayer. Hardware Support
for a Hash-Based IP Traceback. In Proceedings of DARPA
Information Survivability Conference and Exposition (DISCEX),
2001.

V. Sekar, M. K. Reiter, W. Willinger, H. Zhang, R. R. Kompella, and
D. G. Andersen. cSamp: A system for network-wide flow
monitoring. In Proc. 5th USENIX NSDI, San Francisco, CA, Apr.
2008.

H. Song, S. Dharmapurikar, J. Turner, and J. Lockwood. Fast Hash
Table Lookup Using Extended Bloom Filter: An Aid To Network
Processing. In Proc. ACM SIGCOMM, Philadelphia, PA, Aug. 2005.
G. Varghese. Network Algorithmics: An Interdisciplinary Approach
to Designing Fast Networked Devices. Morgan Kaufmann Publishers
Inc., 2004.

F. Vaskovich. Nmap stealth port scanner.
http://www.insecure.org/nmap/index.html,2002.
Average spam message size at record low. http:
//www.virusbtn.com/news/2008/04_03a.xml?rss.

270

[40] Report: 95 percent of all email has that spammy smell.
http://arstechnica.com/news.ars/post/20071212-report-95-percent-of-
all-e-mail-has-that-spammy-smell.html.

K. Xu, Z.-L. Zhang, and S. Bhattacharyya. Profiling Internet
Backbone Traffic: Behavior Models and Applcations. In Proc. ACM
SIGCOMM, Philadelphia, PA, Aug. 2005.

B. Yang, R. Karri, and D. A. McGrew. Divide and Concatenate: An
Architectural Level Optimization Technique for Universal Hash
Functions. In Proceedings of the Design Automation Conference, San
Diego, CA, 2004.

L. Yuan, C.-N. Chuah, and P. Mohapatra. ProgME: Towards
Programmable Network MEasurement. In Proc. ACM SIGCOMM,
Kyoto, Japan, Aug. 2007.

Y. Zhang, M. Roughan, C. Lund, and D. Donoho. An
Information-Theoretic Approach to Traffic Matrix Estimation. In
Proc. ACM SIGCOMM, pages 301-312, Karlsruhe, Germany, Aug.
2003.

Y. Zhang, S. Singh, S. Sen, N. Duffield, and C. Lund. Online
Identification of Hierarchical Heavy Hitters: Algorithms, Evaluation,
and Applications. In Proc. ACM SIGCOMM Internet Measurement
Conference, Taormina, Sicily, Italy, Oct. 2004.

T. Zseby, M. Molina, N. Duffield, S. Niccolini, and F. Raspall.
Sampling and Filtering Techniques for IP Packet Selection,
Internet-Draft, draft-ietf-psamp-sample-tech-07.txt, Work in
Progress, 2005.

[41]

[42]

[43]

[44]

[45]

[46]

APPENDIX
A. HASHING FEWER PACKETS

We claim that FlexSample’s estimation of tuple-counts de-
grades gracefully even if tuples in every packet are not
counted. Below, we provide a proof sketch for the argu-
ment, using a simple example that has only one tuple: the
(srcip, sreport, dstip, dstport, protocol) 5-tuple used to count
the number of packets unique flows. We call the high-volume flows
elephants, and the low volume ones, mice.

Claim 1 With high probability, a counter with a hashing rate of
k < 1 will not misclassify elephants as mice (or vice versa).

Proof Sketch. Let flows with size greater than or equal to 7. be
called elephants and those less than 7, mice. 7. > T},. Let the
observed arrival rate for elephants be 1, and that for mice be p — 26
for some § > 0.

If £ < 1, we can use Chernoff bounds to show that, if packets
arriving at a rate of at least u — ¢ are classified as elephants and
those arriving at a rate of at most . — ¢ are classified as mice, then
the probability of misclassifying elephants as mice (or vice versa)

. . 2
is less than e~ 2H0" . [|

