
* This work was funded in part by the Stanford Networking Research Center.

Maximum Size Matchings and Input Queued Switches*

Sundar Iyer, Nick McKeown

Computer Systems Laboratory, Stanford University,

Stanford, CA 94305-9030

{ sundaes, nickm} @stanford.edu

Abstract — Simulation results suggest that a maximum size matching (MSM) algorithm will
lead to 100% throughput for uniform Bernoulli i.i.d traffic. Previous analysis on the
throughput of MSM algorithms enforce deterministic constraints on the joint arrival traffic. In
this paper we explore MSM algorithms under Bernoulli arrivals. We show that when the
arrival traffic is admissible and cells are scheduled in batches, a sub-class of MSMs called the
Critical Maximum Size Matching achieves 100% throughput under (uniform and non-
uniform) Bernoulli i.i.d arrivals. Further, we show that — with batch scheduling — all MSMs
achieve 100% throughput under Bernoulli i.i.d. uniform load.

I. INTRODUCTION

A commonly used switching fabric in high speed packet switches (e.g. Internet routers,

ATM switches) is a crossbar with input queues (IQ) to hold packets during times of conges-

tion. A crossbar for an port switch is constrained to schedule a matching i.e. it can send at

most one packet from an input port and receive at most one packet at an output port in a single

time slot.1 It is known that such IQ crossbar switches suffer from throughput limitations called

head-of-line (HoL) blocking which can limit the throughput of the switch to about 58% [1].

So it is common for IQ switches to maintain a separate queue for cells at each input destined

to every output [2], commonly called VOQs, which eliminates HoL blocking. There exist a

number of techniques which allow IQ switches with VOQs to obtain 100% throughput. It is

desirable to achieve 100% throughput since it allows a network operator to efficiently utilize

the expensive link bandwidth. For example, Chang et al. [3] and Altman et al. [4] showed

(using the results of Birkhoff [5] and von Neumann [6]) that the crossbar can be scheduled by

a fixed sequence of matchings (called frames) such that the IQ switch can achieve 100%

throughput for any admissible arrival pattern.2 These are similar to time division multiplexing

(TDM) techniques in the switching literature [7]. However frame scheduling requires prior

knowledge of the arrival traffic pattern and the switch needs to maintain a potentially long

sequence of matchings.

1. We will assume that time is slotted and at most one cell (of fixed size) can arrive at each of the input ports of
a switch in each time slot.

2. Traffic is called admissible if no input or output is oversubscribed.

N

N

Here we are interested in online algorithms which attempt to schedule traffic by comput-

ing a matching every time slot. In [8][9][10], it was shown that a maximum weight matching

(MWM) algorithm, which has a time complexity of , (where the weights could be the

queue lengths of the individual VOQs) can give 100% throughput for i.i.d. traffic.

In this paper we’ re interested in maximum size (or cardinality) matchings (MSM) which

have time complexity [11]. We might expect MSM to achieve high throughput because it

maximizes the size of the matching (and hence instantaneous throughput) in each time slot.

However it is known that if ties are broken randomly, MSM does not achieve 100% through-

put for all admissible Bernoulli traffic patterns [8]. Not all MSM algorithms suffer from loss

of throughput. In [12] it is shown that the longest port first (LPF) algorithm (an MSM algo-

rithm that uses weights to break ties) achieves 100% throughput for Bernoulli arrivals.

An open question about the MSM algorithm is: Can MSM give 100% throughput under

uniform Bernoulli arrivals (i.e. when the destination of each arriving cell is picked uniformly

and at random from among all outputs)? Simulation suggests that this is true, but to our

knowledge no proof has been reported.

In [13], Weller and Hajek give a detailed analysis on the stability of online matching algo-

rithms (including MSM) using frame scheduling. They use an traffic model, where no

more than cells may arrive at any input or destined to any output in any consecu-

tive time slots. However the traff ic imposes deterministic constraints on the joint

arrival sequences of packets arriving at all inputs destined to different outputs.

In this paper, we extend some results in [13] by considering stochastic (Bernoulli) arrivals.

We show that using a slight modification of frame scheduling (called batch scheduling), a

class of MSM algorithms (called Critical Maximum Size Matching, or CMSM), can achieve

100% throughput for (uniform or non-uniform) Bernoulli i.i.d. traffic, in addition to

arrival traffic. Second, we will show that if batch scheduling is used, any MSM algorithm can

achieve 100% throughput under Bernoulli i.i.d. uniform load.

II. MSM WITH BATCH SCHEDULING GIVES 100% THROUGHPUT

A. Batch Scheduling

Previous work on frame scheduling assumes the frame size is fixed; we will analyze the

switch under batch scheduling (proposed by Dolev and Kesselman [14]) in which the frame

size varies with the arrival traffic and scheduling algorithm used.3 In batch scheduling, all

arriving cells are classified into one of two strict priority levels, and . Each VOQ is

replaced by two queues, one per priority level. An arriving cell is queued at priority if there

3. The terms “batch scheduling” and “ frame scheduling” have been used inter-changeably in the literature. In this
paper “ frame scheduling” means the frame size is fixed, whereas with “batch scheduling” it may vary.

O N3()

N2.5

α S,()
0 α 1≤ ≤ S

α S,()

α S,()

p1 p2

p2

are any cells (in any VOQ of the switch) at priority . Since cells have strict priority over

 cells, at any given time , only cells at will be considered for departure. If at some time

all the cells at have been scheduled, and all VOQs at become empty, then all the cells at

priority are immediately transferred to the queues. The set of transferred cells is called

a batch. Newly arriving cells are stored in the now empty queues and will not be available

to the scheduling algorithm until the current batch has departed. The batch number is referred

to by its index . We shall denote by the time taken to schedule batch . Each batch may

contain multiple cells from a given input to an output. In what follows, we will represent a

batch by a weighted bipartite graph , with edge weights representing the number of

cells at input destined to output in batch .

B. Preliminaries

Definition 1: Degree : The degree of an input (output) vertex , , is defined as the

number of cells destined from input (to output) in batch . i.e. , if is

an input, and , if is an output.

Definition 2: Maximum Degree : The maximum degree of batch , is the maximum

degree amongst all input or output vertices in the weighted bipartite request graph for

batch . i.e. .

It is a well known that any request graph with maximum degree can be scheduled in

time slots [15]. This leads to the definition of the critical maximum size matching.

Definition 3: Critical Maximum Size Matching (CMSM): A critical maximum size matching

(CMSM) algorithm is a MSM that schedules batches of maximum degree in timeslots.

The construction of a CMSM for any batch is shown in [13] (where it also noted that not

all MSMs belong to the class of CMSMs).

Definition 4: Weakly Stable: A system of queues is said to be weakly stable if, for every

, there exists a such that, , (where denotes time slots).

Definition 5: Strongly Stable: A system of queues is said to be strongly stable, if it is

weakly stable, and the limit, is finite.

p1 p1

p2 t p1

p1 p1

p2 p1

p2

k Bk k

G wk i j,()
i j k

dv k, v dv k,

v v k dv k, wk v j,()
j 1=

N

∑= v

dv k, wk i v,()
i 1=

N

∑= v

Dk k Dk

G

k Dk max dv k,
v∀ G∈

=

M M

M M

Xn

ε 0> D 0> P Xn D>{ }
n ∞→
lim ε< n

Xn

E
n ∞→
lim Xn()

Definition 6: 100% Throughput: (Strong Sense)4: A service discipline which services a

system of queues is said to give 100% throughput, if is strongly stable.

Theorem 1: Consider a random variable whose evolution is described by a discrete time

markov chain (DTMC) which is aperiodic and irreducible with state vector . Sup-

pose that a lower bounded non-negative function , called a Lyapunov function, :

 exists and suppose that is a finite subset of , such that ,

. Then if , and there exist , such that

, (1)

then all states of the DTMC are positive recurrent and the process is strongly stable i.e.

 is finite.

Pr oof : This is a straightforward extension of Foster’s cri teria and fol lows f rom

[16][17][18]. �

C. Stability of CMSM under Bernoulli Traffic

In this section we assume that arrivals to input are Bernoulli i.i.d. with

rate , and are destined to each output with probabil i ty . We wil l

denote the arrival matrix as,5

Theorem 2: The process is strongly stable under batch scheduling with the CMSM, if

input traffic is admissible and Bernoulli i.i.d. uniform.

Proof: Consider the evolution of the process (the time taken to schedule batch).

is an (aperiodic and irreducible) discrete time6 markov chain, since

We define a quadratic Lyapunov function, . Because input traffic is uniform and

admi ssi bl e, , w i th . Hence, f or al l i nput ports ,

, and f or al l output por ts ,

. Hence,

4. Other definitions of 100% throughput exist in the literature.
5. In what follows we shall assume that the arrival rate of cells at a particular input or output, for the traf-

fic to be admissible. This is contrast to the traffic model used in [13] where .

6. Strictly speaking ‘ time’ here does not refer to a process with constant increments as in the usual sense.

D

Xn Xn

Yn NM∈
V Yn() V

NM R→ A NM V Yn() B'≤ Yn A∈⇒

B′ R+∈ E V Yn 1+() Yn[] ∞< Yn∀ γ R+∈ B R+∈

E V Yn 1+() V Yn()– Yn[] γV Yn()–< Yn∀ B>

V Yn()
E

n ∞→
lim V Yn()[]

i 1 2 … N, , ,{ }∈
αi j 1 2 … N, , ,{ }∈

αi j,

αi

αi αj, 1<

α 1≤

A αi j,[] where: αj αi j,

i 1=

N

∑ 1<= αi αi j,

j 1=

N

∑= 1< αi j, 0≥,, ,≡

Bk
2

Bk k Bk

P Bk 1+ j= B0 i0= B1 i1= … Bk ik=, , ,{ }
P Bk 1+ j= Bk ik={ }=

V Bk() Bk
2=

αi j,
α
N
----= i j,()∀ G∈, α 1< v G∈

E dv k 1+, Bk[] αBk= v G∈
E dv k 1+, Bk[] α

N

i 1 … N, ,{ }∈
∑ Bk αBk= =

, .

From the Chernoff bound, and for any we get

 (2)

We would like to bound the time taken to schedule batch i.e. , given knowledge of

. By definition, a CMSM schedules batch in slots, and so we can bound by

bounding . Since the distribution of is bounded by the maximum degree amongst

each of the inputs and outputs, we can use Equation (2) and the union bound to write,

 (3)

Choose an such that ; in particular let . We are interested in

maki ng l ess than . So we choose such that ,

, i.e. . Choosing we can write Equation

(3) as,

.

Si nce = , w e have . N ow, l et ev ent

 and let . Then and

, and so

.

Since independent Bernoulli processes can generate at most cells in a time slot we have

, which leads to , and hence

.

Thus is bounded by a convex combination of a number which is less than

 i.e. and a number which is greater than i.e. . Choos-

ing large enough can make the combination strictly less than , where

. Hence,

E dv k 1+, Bk[] αBk= v G∈∀

δ 0> v G∈∀

P dv k 1+, 1 δ+()αBk> Bk{ } eδ

1 δ+() 1 δ+()

 
 

αBk

<

k 1+ Bk 1+

Bk k Dk Bk 1+

Dk 1+ Dk 1+

N N

P Dk 1+ 1 δ+()αBk≤ Bk{ }

P dv k 1+, 1 δ+()αBk≤ Bk{ }
v G∈
∩

 
 
 

1 P dv k 1+, 1 δ+()αBk> Bk{ }
v G∈
∪

 
 
 

–

1 P dv k 1+, 1 δ+()αBk> Bk{ }
v G∈
∑– 1 2N

eδ

1 δ+() 1 δ+()

 
 

αBk

–>≥ Q.≡

= =

ε 0> ε 1 α–< ε 1 α–() 2⁄=

1 δ+()α 1 ε–() 1 α+() 2⁄= δ 0>
δ 1 ε–() α⁄[] 1–< δ 1 α–() 2α⁄< δ 1 α–() 4α⁄=

P Dk 1+ 1 α+()Bk 2⁄< Bk{ } Q>

Bk 1+ Dk 1+ P Bk 1+ 1 α+()Bk 2⁄< Bk{ } Q>
A Bk 1+ 1 α+()Bk 2⁄< Bk{ }≡ Ac Bk 1+ 1 α+()Bk 2⁄≥ Bk{ }≡ P A{ } Q>
P Ac{ } 1 Q–≤

E V Bk 1+() Bk[] P A{ }E V Bk 1+() A Bk,()[] P Ac{ }E V Bk 1+() Ac Bk,()[]+=

N N

Bk 1+ Bk NBk≤ E V Bk 1+() Ac B, k()[] N2Bk
2 N2V Bk()≤ ≤

E V Bk 1+() Bk[] Q
1 α+

2

 
 

2

V Bk() 1 Q–()N2V Bk()+<

E V Bk 1+() Bk[]
V Bk() 1 α+()2V Bk() 4⁄ V Bk() N2V Bk()

Q 1 γ–()V Bk()
0 γ 1< <

, (4)

which can be re-written as .

Observe from Equation (3) that is always less than one. We can choose above so that

is less than . Hence, , which implies that . We will

choose , so that the conv ex combi nat i on i s l ess than

.

Note that since we have fixed ; and , are constants, is solely a function of . Also

note as increases, and is a strictly increasing function of . Hence the inequal-

ity in Equation (3) is satisfied for some large enough value of , where is a con-

stant. Then the quadratic Lyapunov function satisfies Equation (1) and we can write,

; .

Also since al l the conditions in Theorem 1 are al l satisfied.

Hence the process is strongly stable (over batch index). From Def ini tion 5,

. �

Theorem 3: CMSM gives 100% throughput under batch scheduling, if the input traffic is

admissible and Bernoulli i.i.d. uniform.

Proof: Let many-to-one function denote the index of the batch that is being sched-

uled at time . We’ ll define to be the proportion of time that the batch with index

 is seen in a period of time . Specifically we define .7

First, we’ l l show that the process is strongly stable over time. Since the DTMC is

ergodic, we can write,

 (5)

Also,

7. Note that this definition overestimates the proportion of time that the last batch is seen in a period of time

, since it is possible that the last batch has not been completely scheduled at the end of time . We take care
of this boundary condition later.

Q
1 α+

2

 
 

2

V Bk() 1 Q–()N2V Bk()+ 1 γ–()V Bk()<

Q
N2 1– γ+

N2 a2–
------------------------ where a,> 1 α+

2

 
 

2

=

Q γ Q

1 0 γ 1 a2–< < 0 γ 3 2α– α2–() 4⁄< <
γ 3 2α– α2–() 8⁄=

1 γ–()V Bk() 5 2α α2+ +()V Bk() 8⁄=

δ α N Q Bk

Bk Q 1→ Q Bk

Bk C1> C1

V .()

E V Bk 1+() V Bk()– Bk[] 3 2α– α2–
8

 
  V Bk()–< Bk∀ Bk C1>(),

E V Bk 1+() Bk[] N2Bk≤ ∞<
V Bk() k

E Bk
2[]{ }

k ∞→
lim ∞<

k t()
t R k t()()

k t() T R k t()() Bk t() T⁄=

k T()
T T

Bk t()

E Bk T()[]{ }
T ∞→
lim

Bk t()

T

t 0=

T

∑
 
 
 

T ∞→
lim=

 (6)

Also Theorem 2 implies that , and so we get from Equation (6),

But since , and using Equation (5) we get,

 (7)

Also, since then . This means that .

So we can write,

.

Changing the index back to we can write,

.

But we can write the Cesaro average as, , and since from

Theorem 2, , we can substitute in Equation (7) to get

. (8)

R k t()()Bk t()

k t() 0=

k T()

∑
Bk T()

T

 
  Bk T()–

Bk t()

T

t 0=

T

∑ R k t()()Bk t()

k t() 0=

k T()

∑
Bk T()

T

 
  Bk T()

R k t()()Bk t()

k t() 0=

k T()

∑
B2

k T()

T
-------------–

T ∞→
lim

Bk t()

T

t 0=

T

∑
T ∞→
lim R k t()()Bk t()

k t() 0=

k T()

∑
T ∞→
lim

B2
k T()

T
-------------.+≤ ≤⇒

+< <

B2
k T()

T

T ∞→
lim 0→

Bk t()

T

t 0=

T

∑
 
 
 

T ∞→
lim R k t()()Bk t()

k t() 0=

k T()

∑
 
 
 

T ∞→
lim

Bk t()Bk t()

T

k t() 0=

k T()

∑
 
 
 

T ∞→
lim

k T()
T

Bk t()Bk t()

k T()

k t() 0=

k T()

∑
 
 
 

 
 
 

T ∞→
lim .

= =

=

T∀ k T() T⁄ 1<

E Bk T()[]{ }
T ∞→
lim

Bk t()

T

t 0=

T

∑
 
 
 

T ∞→
lim

k T()
T

Bk t()Bk t()

k T()

k t() 0=

k T()

∑
 
 
 

 
 
 

T ∞→
lim

Bk t()Bk t()

k T()

k t() 0=

k T()

∑
 
 
 

T ∞→
lim .≤

= =

E Bk
2[]{ }

k ∞→
lim ∞< E Bk[]{ }

k ∞→
lim ∞< T ∞→ k T() ∞→⇒

Bk t()Bk t()

k T()

k t() 0=

k T()

∑
 
 
 

T ∞→
lim

Bk t()Bk t()

k T()

k t() 0=

k T()

∑
 
 
 

k T() ∞→
lim=

k T() T

Bk t()Bk t()

k T()

k t() 0=

k T()

∑
 
 
 

k T() ∞→
lim

BtBt

T

t 0=

T

∑
 
 
 

T ∞→
lim

BkBk

T

k 0=

T

∑
 
 
 

T ∞→
lim B2

k

T

k 0=

T

∑
 
 
 

T ∞→
lim= = =

B2
k

T

k 0=

T

∑
 
 
 

T ∞→
lim E B2

T(){ }
T ∞→
lim=

E B2
T(){ }

T ∞→
lim ∞<

E Bk T()[]{ }
T ∞→
lim

Bk t()

T

t 0=

T

∑
 
 
 

T ∞→
lim= ∞<

We are now ready to show that the switch gives 100% throughput. Let denote the size of

all the input queues at time . We will show that is strongly stable over time. We know

that, . Also since , we have, .

Now let us consider the Cesaro average of the process ,

.

From Equation (8) it follows that the Cesaro mean is finite i.e. . Hence the

Markov chain defining the process is ergodic and we can write,

.

Since the system of queues is strongly stable, and the switch has

100% throughput. �

Theorem 4: CMSM gives 100% throughput under batch scheduling, for any Bernoulli

i.i.d admissible arrival process.

Proof: The proof is similar to Theorem 2. Instead of using the uniform arrival rate for

all inputs and outputs as in Equation (2) and Equation (3) in Theorem 2, we replace these by

the individual Bernoulli arrival rates , at each input or the rates to each output for the

 vertices. �

D. Stability of MSM under uniform load using batch scheduling

Consider the distribution of the VOQ with minimum length in batch , i.e. we define

.

Lemma 1: If the minimum size of the VOQ in batch is and the maximum

degree of the request graph for batch is , then any MSM will serve batch

within time slots.

Proof: Consider the request graph for batch . Split into two request graphs

and . Let be a perfect graph i.e. a graph such that all VOQs have length . Let

be a request graph corresponding to all the remaining cells in batch not contained in .

The maximum degree of is bounded by . As shown in [14], any MSM can

schedule using matchings of size . Also, since any MSM is also a maximal

Qt

t Qt

Qt N Bk t() Bk t() 1++{ }< Bk t() 1+ NBk t()< Qt N2 N+() Bk t(){ }<

Qt

Qt

T

t 0=

T

∑
 
 
 

T ∞→
lim

N2 N+()Bk t()

T

t 0=

T

∑
 
 
 

T ∞→
lim< N2 N+() Bk t()

T

t 0=

T

∑
 
 
 

T ∞→
lim=

Qt

T

t 0=

T

∑
 
 
 

T ∞→
lim ∞<

Qt

E QT[]{ }
T ∞→
lim

Qt

T

t 0=

T

∑
 
 
 

∞<
T ∞→
lim=

E QT[]{ }
T ∞→
lim ∞< Q t()

α

αi i αj j

2N

k 1+

w∗k 1+ min
i j,()∀ 1 2 … N, , ,{ }∈

= wk 1+ i j,()

k 1+ w∗k 1+

G k 1+ Dk 1+ k 1+

2Dk 1+ w∗k 1+ N–

G k 1+ G G1

G2 G1 w∗k 1+ G2

k 1+ G1

G2 Dk 1+ w∗k 1+ N–

G1 w∗k 1+ N N

matching, any MSM can schedule with matchings. Thus the total

time taken to service batch is . �

Theorem 5: MSM gives 100% throughput under batch scheduling, if the input traffic is

admissible and Bernoulli i.i.d. uniform.

Proof: Similar to Theorem 2, we consider the evolution of the DTMC process , and the

same quadratic Lyapunov function, . Recall that represents the number

of cells from input destined to output in batch . Hence,

, .

From the Chernoff bound, and for any we get

. (9)

Now we use Equation (9) to get,

 (10)

Also from Equation (3) replacing the symbol by we get for any ,

. (11)

Define the two events and,

. Note that by definition and . Let

. From Lemma 1 we have . Hence, we can

write the following weak inequality,

G2 2 Dk 1+ w∗k 1+ N–()
k 1+ 2 Dk 1+ w∗k 1+ N–() w∗k 1+ N+ 2Dk 1+ w∗k 1+ N–=

Bk

V Bk() Bk
2= wk i j,()

i j k

E wk 1+ i j,() Bk[] α
N
----Bk= i j, 1 2 … N, , ,{ }∈∀

δ2 0> i j, 1 2 … N, , ,{ }∈∀

P wk 1+ i j,() 1 δ2–()α
N
----Bk< Bk

 
 
 

e
α
N
----B

k

δ2
2

2
-------–

<

P w∗k 1+ 1 δ2–()α
N
----Bk≥ Bk

 
 
 

P wk 1+ i j,() 1 δ2–()α
N
----Bk≥ Bk

 
 
 

i j,()∀
∩

 
 
 

1 P wk 1+ i j,() 1 δ2–()α
N
----Bk< Bk

 
 
 

i j,()∀
∪

 
 
 

–

1 P wk 1+ i j,() 1 δ2–()α
N
----Bk< Bk

 
 
 

i j,()∀
∑– 1 N2 e

α
N
----B

k

δ2
2

2
-------–

 
 
 

–>≥ Q1.≡

= =

δ δ1 δ1 0>

P Dk 1+ 1 δ1+()αBk≤ Bk{ } 1 2N
e

δ1

1 δ1+()
1 δ1+()

 
 
 

αBk

– Q2≡>

E1 w∗k 1+ 1 δ2–()α
N
----Bk≥ Bk

 
 
 

w∗k 1+ N 1 δ2–()αBk≥ Bk{ }≡ ≡

E2 Dk 1+ 1 δ1+()αBk≤ Bk{ }≡ P E1{ } Q1> P E2{ } Q2>

E Bk 1+ 1 2δ1 δ2+ +()αBk≤ Bk≡ E1 E2∩ E⇒

Hence, . We shall choose and

such that , where . In particular choose .

I f we set , then . To sati sf y thi s i nequal i ty choose

. This leads to

. (12)

Let event and let . And so

. (13)

We know that which, with Equation (12) and Equation (13) leads to,

. (14)

Simi lar to the reasoning in Theorem 2, is a convex combination of

 and . Again we will choose, such that the

convex combination is less than . This is true if we

choose so as to satisfy the inequality , where .

As before, note that as increases, , and since is a strictly increasing func-

tion of , the inequality in Equation (3) would be true for some , where is a con-

stant. Then the quadratic Lyapunov function would satisfy both conditions in Theorem

1. Similar to the reasoning in Theorem 2 (and Theorem 3), MSM gives 100% throughput

under batch scheduling. �

III. CONCLUSIONS

Our work was motivated by simulation results that suggest that MSM (with ties broken

randomly) will give 100% throughput for uniform Bernoulli i.i.d. arrivals. Previous work on

the stability of MSM imposed deterministic constraints on the arrivals. We extended these

results to show that the class of CMSM algorithms achieves 100% throughput under (uniform

and non-uniform) Bernoulli i.i.d. arrivals, and — when using batch scheduling — the general

class of MSM algorithms achieve 100% throughput, if the traffic is Bernoulli i.i.d. uniform.

Our results don’t quite meet our original goal of proving this result for continuous scheduling

i.e. without grouping arrivals into batches. This remains an open question.

P E{ } P E1 E2∩{ }≥ 1 P E1
c E2

c∪{ }–=

1 P E1
c{ }– P E2

c{ } Q1 Q2 1.–+>–≥

P Bk 1+ 1 2δ1 δ2+ +()αBk≤ Bk{ } Q1 Q2 1–+> δ1 0> δ2 0>
1 2δ1 δ2+ +()α 1 ε–< 0 ε 1 α–<< ε 1 α–() 2⁄=

δ1 δ2 δ∗= = δ∗ 1 α–() 6⁄ α<
δ1 δ2 δ∗ 1 α–() 12⁄ α= = =

P Bk 1+ 1 α+()Bk 2⁄< Bk{ } Q1 Q2 1–+ Q′≡>

A Bk 1+ 1 α+()Bk 2⁄< Bk≡ Ac Bk 1+ 1 α+()Bk 2⁄≥ Bk≡

E V Bk 1+() Bk[] P A{ }E V Bk 1+() A Bk,()[]= P Ac{ }E V Bk 1+() Ac Bk,()[]+

V Bk 1+() Bk NBk≤

E V Bk 1+() Bk[] Q′ 1 α+
2

 
 

2

V Bk() 1 Q′–()N2V Bk()+<

E V Bk 1+() Bk[]

1 α+()2V Bk() 4⁄ N2V Bk() γ 3 2α– α2–() 8⁄=

1 γ–()V Bk() 5 2α α2+ +()V Bk() 8⁄=

Q′ N2 1– γ+

N2 a2–
------------------------ Q′ 1< < a

1 α+
2

 
 

2

=

Bk Q′ 1→ Q′
Bk Bk C2> C2

V .()

IV. ACKNOWLEDGEMENTS

We would like to thank Balaji Prabhakar and Devavrat Shah for some useful discussions.

We would also like to thank Michael Neely and Bruce Hajek for pointing out errors in an ear-

lier version.

V. REFERENCES

[1] M. Karol, M. Hluchyj, S. Morgan, “ Input versus Output Queueing on a Space-Division Packet
Switch” , IEEE Trans. on Communications, vol. COM-35, no. 12, December 1987, pp. 1347-1356.

[2] Y. Tamir and H. C. Chi, "Symmetric crossbar arbiters for VLSI communication switches", IEEE
Transactions on Parallel and Distributed Systems, vol. 4, No. 1, pp. 13-27, Jan. 1993.

[3] C.-S. Chang, W.-J. Chen, and H.-Y. Huang, “On service guarantees for input buffered crossbar
switches: A capacity decomposition approach by Birkhoff and von Neumann,” In IEEE Infocom,
Tel Aviv, Israel, 2000.

[4] E. Altman, Z. Liu, R. Righter, “Scheduling of an input-queued switch to achieve maximal
throughput” , Probability in the Engineering and Informational Sciences, pp. 327-334, vol. 14,
2000.

[5] G. Birkhoff, "Tres observaciones sobre el algebra lineal," Univ. Nac. Tucum an Rev. Ser. A, vol.
5, pp. 147--151, 1946.

[6] J. von Neumann, "A certain zero-sum two-person game equivalent to the optimal assignment
problem, " Contributions to the Theory of Games, Vol. 2, pp. 5-12, Princeton University Press,
Princeton, New Jersey, 1953.

[7] Inukai, T. (1979), “An efficient SS/TDMA time slot assignment algorithm,” IEEE Transactions
on Communications, COM-27:1449-1455.

[8] N. McKeown, V. Anantharam, J. Walrand, “Achieving 100% Throughput in an input-queued
switch,” Proceedings of IEEE Infocom ‘96, vol. 1, pp. 296-302, March 1996.

[9] L. Tassiulas, “Scheduling and performance limits of networks with constantly changing topolo-
gy,” IEEE Trans. Inform. Theory, vol. 43, pp. 1067-1073, May 1997.

[10] J. Dai and B. Prabhakar, "The throughput of data switches with and without speedup," in Proceed-
ings of IEEE INFOCOM '00, Tel Aviv, Israel, March 2000, pp. 556 -- 564.

[11] J. E. Hopcroft, R. M. Karp, “An algorithm for maximum matchings in bipartite graphs” ,
SIAM Journal on Computing, 2(4):225-231, December 1973.

[12] Adisak Mekkittikul, and Nick McKeown, “A Practical Scheduling Algorithm to Achieve 100%
Throughput in Input-Queued Switches." IEEE Infocom 98, Vol 2, pp. 792-799, April 1998, San
Francisco.

[13] Timothy Weller, Bruce Hajek, “Scheduling nonuniform traffic in a packet-switching system with
small propagation delay,” IEEE/ACM Transactions on Networking 5(6): 813-823, 1997.

[14] Shlomi Dolev and Alexander Kesselman, “Bounded latency scheduling scheme for ATM cells",
Computer Networks, vol. 32, no. 3, pp.325-331, 2000.

[15] M. Hall, Jr., Combinatorial Theory, Waltham, MA, Blaisdell, 1969.
[16] L. Tassiulas and A. Ephremides, "Stability Properties of Constrained Queueing Systems and

Scheduling Policies for Maximum Throughput in Multihop Radio Networks," IEEE Trans. on Tu-
tomatic Control, 37, December 1992, pp. 1936-1949.

[17] H. J. Kushner, Stochastic Stability and Control, Academic Press. 1967.
[18] G. Fayolle, “On random walks arising in queuing systems: ergodicity and transience via quadratic

forms as lyapunov functions - Part I” , Queueing Systems, vol. 5, pp. 167-184, 1989.
[19] R. Motwani and P. Raghavan, "Randomized Algorithms", Published by Cambridge University

Press, Cambridge UK and New York, 1995.

n
5 2⁄

