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Abstract --A parallel packet switch (PPS) is a switch in which the mem-
ories run slower than the line rate. Arriving packets are spread (or load-bal-
anced) packet-by-packet over multiple slower-speed packet switches. It is
already known that with a speedup of , a PPS can theoretically mimic a
FCFS output-queued (OQ) switch. However, the theory relies on a central-
ized packet scheduling algorithm that is essentially impractical because of
high communication complexity. In this paper, we attempt to make a high
performance PPS practical by introducing two results. First, we show that
small co-ordination buffers can eliminate the need for a centralized packet
scheduling algorithm, allowing a full distributed implementation with low
computational and communication complexity. Second, we show that with-
out speedup, the resulting PPS can mimic an FCFS OQ switch within a delay
bound.

Keywords--packet-switch; output-queueing; inverse-multiplexing; load-bal-
ancing; Clos’ network.

I. INTRODUCTION

The capacity of high performance packet switches (e.g. Inter-
net routers and ATM switches) is limited by the random access
time of commercially available memories. While switching
capacity requirements have grown, random access times in com-
mercial DRAMs have remained essentially unchanged.1 This has
lead to an evolution of packet switch architectures from output-
queued (OQ) and shared memory designs (in which the memory
bandwidth must equal the capacity of the switch), to input-
queued (IQ) or combined input and output-queued (CIOQ)
designs where the memory bandwidth need equal approximately
the data rate of a single line.

As line rates increase beyond OC192 (10Gb/s) to say OC768
(40Gb/s) — and even OC3072 (160Gb/s) — it becomes difficult,
perhaps impossible, to buffer packets as fast as they arrive. For
example, a 40-byte TCP segment arriving on a 160Gb/s line must
be written to and read from a buffer in less than 1ns. This should
be compared to the 50ns random access time of today’s DRAMs.

The purpose of this paper is not to argue that line rates will
continue to increase — on the contrary, it could be argued that
DWDM will lead to a larger number of logical channels each

1. The random access time (the time to retrieve data at random from
any memory location) should not be confused with the memory I/O
time (the time to send retrieved data off-chip to the requester). While
new memory technologies, such as RAMBUS [3], SDRAMs and
DDRAMs have fast I/O times, they use memory cores with random
access times of approximately 50ns.
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operating no faster than, say, 10Gb/s. We simply make the obser-
vation that if line rates do increase, then memory bandwidth lim-
itations may make packet buffers difficult or impossible to
implement.

II. BACKGROUND

In a previous paper [1] we proposed the parallel packet switch
(PPS) as a way to overcome the memory bandwidth limitation. A
key attribute of the PPS is that its packet buffers can run slower
than the line rate; by increasing parallelism they can be made to
operate arbitrarily slowly. The PPS architecture is illustrated in
Figure 1, and is based on the 3-stage Clos Network [2]. The main
difference is that a Clos network is an unbuffered switch fabric,
whereas the PPS contains buffered packet switches in its center
stage. Figure 1 shows an example of a  PPS. Each port is
connected to all threeoutput-queued center stage switches which
operate independently and in parallel. Packets arriving at an input
port are examined by the demultiplexor, then sent to one of the
slower speed center stage switches (or “layers”). Packets are pro-
cessed individually; i.e. there is no guarantee that packets belong-
ing to the same flow or to the same output will pass through the
same layer. In fact, the demultiplexor will ideally spread packets
equally over all layers. Packets are stored in the output-queues of
the center stage switches and are delivered to the multiplexor at
their time of departure. The architecture as such is not novel and
previous work [4][5][6][7][8] has described load-balancing or
“inverse-multiplexing” [9][10][11][12] systems. However, we
are not aware of other published work that studies the perfor-
mance of a PPS.

Figure 1 shows that packets2 from each input operating at line
rate are sent over  links each operating at a rate of at least

. In general, the internal links in the center stage switches
operate at a rate , where is thespeedup.

We previously explored whether a PPS can be made to mimic3

an output queued switch. In particular, we proved the following
theorem in [1].

2. The terms packet and cell are used inter-changeably throughout the
rest of this paper.
3.Two switches are said to mimic [13][14][15][16] each other, if under
identical inputs, identical packets depart from each switch at the same
time.
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Theorem 1:(Sufficiency) With a speedup of , a PPS can
mimic a FCFS OQ unicast switch.

A.  Limitations of Previous Work

Unfortunately, Theorem 1 can only really be viewed as a theo-
retical, rather than a practical result — the demultiplexor must run
a packet scheduling algorithm (called CPA [1]) that limits the
capacity of the PPS for the following two reasons.

1. Communication complexity.
CPA requires each input to contact a centralized sched-
uler every arbitration cycle. With  ports,  requests
must be communicated to and processed by the arbiter
each cycle. This requires a high speed control path run-
ning at the line rate between every input and the CPA
scheduler. Furthermore, CPA requires that the departure
order (i.e. the order in which packets are sent from each
layer to a multiplexor), be conveyed to each multiplexor
and stored.

2. Speedup.
CPA requires a speedup of two in the center stage
switches. The PPS therefore over provisions the
required capacity by a factor of two and the links are on
average only 50% utilized.

In addition to the difficulty of implementation, CPA does not
distribute traffic equally among the center stage switches, making
it possible for buffers in a center stage switch to overflow even
though buffers in other switches are not full. This leads to ineffi-
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cient memory usage.4

Another problem with CPA is that it requires each multiplexor
to explicitly read, or fetch, each packet from the correct layer in
the correct sequence. This feedback mechanism makes it impossi-
ble to construct each layer from a pre-existing unaltered switch or
router.

In summary, our previous results lead tolarge communication
complexity, high speedup requirement, inefficient utilization of
buffer memory,and special-purpose hardware for each layer. In
this paper, we overcome these problems via the introduction of
small memories (presumably on-chip) in the multiplexors and
demultiplexors, which:

1. Enable the demultiplexors and multiplexors to operate
independently, eliminating the communication complex-
ity,

2. Remove the speedup requirement for the internal layers,

3. Allow the buffers in the center stage switches to be uti-
lized equally, and

4. Allow a feed-forward data path in which each layer may
be constructed from pre-existing, “standard” output-
queued switches.

In Section III, we introduce some terminology and definitions

4. It is possible to create a traffic pattern that does not utilize up to 50%
of the buffer memory for a given output port.
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Figure 1: The architecture of a Parallel Packet Switch based on output-queued switches.
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which will be used in the rest of this paper. In Section IV-A, we
introduce a distributed layer selection algorithm for a PPS. In
Section IV-B we see how the distributed layer selection algo-
rithm for a PPS combined with a small co-ordination buffer in
the multiplexors can mimic an FCFS OQ switch. In Section IV-
C, we show how the distributed layer selection algorithm com-
bined with a buffer in both the multiplexors and the demulti-
plexors can eliminate both the speedup and communication
complexity in a PPS. Finally in Section V, we discuss how a
PPS can be implemented.

III. D EFINITIONS

Definition 1: Cell — A fixed-length packet (though not neces-
sarily equal in length to a 53-byte ATM cell). Variable length
packets arriving to a PPS are assumed to be segmented into
cells, carried across the switch, then reassembled prior to
departure. This is common in high performance packet
switches, and is not discussed further here.

Definition 2: Time slot— The time taken to transmit or receive
a cell at a link rate of .

Definition 3: Internal time slot — This is the time taken to
transmit or receive a fixed length cell at a link rate of ,
where  is the number of center stage switches in the PPS.

Definition 4: Shadow OQ switch — In this paper, we will
assume that there exists an OQ switch, called the “shadow OQ
switch”, with the same number of input and output ports as the
PPS. The line interfaces of the shadow OQ switch also operate
at line rate  and receive identical input traffic patterns as the
PPS.

Definition 5:Relative queueing delay — Consider a PPS switch
and an OQ switch that both receive the same stream of cells. A
cell’s relative queueing delay is the increased queueing delay (if
any) that it receives in the PPS switch relative to the delay it
receives in the OQ switch. Note that relative queueing delay
only includes differences attributed to queueing. Differences in
fixed delay (e.g. because of differences in propagation delay)
are not included in this measure.

Definition 6: Input link constraint — Because each internal
link runs at rate , an input demultiplexor can send a
cell to a specific layer at most once every  time slots.

Definition 7: Available input link set —AIL(i,n) is the set of
layers to which input demultiplexor  can start sending a cell in
time slot . From [1], .

Definition 8:Output Link Constraint — Because each internal
link runs at rate , a layer can send a cell to an output
multiplexor at most once every  time slots.
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Definition 9: Departure Time —When a cell arrives, the
demultiplexor selects a departure time for the cell. A cell arriv-
ing to input  at time slot  and destined to output  is assigned
the departure time .

Defin i t i on  10 : Ava i lab le  Outpu t  L ink  Se t —
, is the set of layers that can send a cell to

external output  at time slot  in the future. From [1],
.

IV. A D ISTRIBUTED APPROACH

In the centralized algorithm (CPA) the most complex deci-
sions are made by the demultiplexors. If, at time , a cell
arrives at input  destined for output , then port ’s demulti-
plexor must choose the layer to send the cell to based on

 and . While knowledge of
 is local to input ,  requires

knowledge of all cells arriving at other input ports destined to
output .

Since our goal is to enable each of the demultiplexors and
multiplexors to operate independently, we will consider a dis-
tributed algorithm in which the demultiplexors only have local
information. In other words, a demultiplexor decides which
layer to send a cell to based only on the knowledge of cells that
have arrived at its input. When a cell arrives, a demultiplexor
determines its departure time, then sends the cell to a layer that
can deliver the cell to the correct output without violating the
output link constraints.

We will work towards the main result of the paper in three
steps. First, we will explore what happens in a PPS with a
speedup of  when the demultiplexors use only local
information. We find that the PPS comes close to mimicking a
FCFS switch, but cells can become mis-sequenced by the PPS,
preventing precise mimicking. The mis-sequencing can be
bounded which motivates — in the second step — the addition
of a small co-ordination buffer in each multiplexor to re-
sequence the cells before transmitting them on the external line.
The co-ordination buffer operates at the line rate, , and so
compromises our original goal of having no memories running
at the line rate. However, under certain conditions, the buffer is
small enough to be placed on-chip, and so may be acceptable. In
the third and most important step, we introduce another co-ordi-
nation buffer of the same size in the demultiplexor. We find that
this allows the PPS to mimic an FCFS OQ switch without
speedup.

A.  Step 1: Can a PPS, with a speedup of 2, mimic a FCFS OQ
switch using only local information?

Our distributed algorithm will use independent demultiplex-
ors that have only local information. The following three defini-
tions will help us describe the algorithm:

Definition 11:Local departure time— When a cell arrives the
demultiplexor selects the cell’s departure time. If the departure

i n j
DT n i j, ,( )

AOL j DT n i j, ,( ),( )
j DT n i j, ,( )

AOL j DT n i j, ,( ),( ) k k S⁄ 1+–≥
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time is determined locally by an independent demultiplexor
(without knowledge of cells arriving at different inputs), then
we call it a local departure time. A cell arriving to input  at
time slot  and destined to output  is assigned the local
departure time .

Definition 12:Conflict free order —An ordering of cells
destined to output  is said to be conflict-free if output  can
transmit these cells in order without violating the output link
constraints.

Definition 13:Local AOL set —The local available output
link set is the set of layers that have
not been sent any of the previous  cells from input

 to output . The LAOL set, unlike the AOL set, is oblivious
to cells arriving at different inputs. By definition, the LAOL
set leads to a conflict-free order of cells.

The algorithm. Each demultiplexor  maintains an avail-
able input link set  and, for each output , a local
available output link set . Demulti-
plexor  selects local departure time so as to
maintain FCFS order for cells between inputi and output ,
then selects a layer which is common to both  and

.

i
n j
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An example.An example of decisions made by the indepen-
dent demultiplexors is illustrated in Figure 2a. It shows a
PPS with  center stage switches and a speedup of

. The demultiplexors operate at a line rate of  and
send cells to the center stage switches over links which oper-
ate at a line rate . The six cells shown arrive at
input port  and are destined to output port. These cells
are shown shaded and are distributed by input port  in a
FCFS conflict free order; i.e. any two cells in the same center
stage switch will depart at least time slots apart.
Figure 2b illustrates another FCFS conflict-free order of cells
(which are shown unshaded) sent by input port to the cen-
ter stage switches of the same PPS.

Lemma 1: (Sufficiency) A speedup of  is sufficient
for a PPS with independent demultiplexors to send cells from
each input to each output in a conflict-free order.

By definition, theLAOL set maintained by input  for out-
put  forms a conflict-free ordering on output . It suffices to
show that there will always exist a layer

, i.e.
, which must be

satisfied if . But we
know from Definition 13 that

. So from Defini-
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Figure 2: Insertion of cells in a FCFS order for output  in a PPS with
ten layers and speedup two.Qk,5 refers to output queue number  in the
internal switch . The numbers in the cells denote the FCFS sequence
of the arrivals on the demultiplexors. (a) The FIFO order of cells
inserted from input one. Cells sent by input one are shown shaded. (b)
The FIFO order of cells inserted from input two. These cells are shown
unshaded.
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denote the FCFS sequence of the departure on multiplexor .
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of requests for reading cell  and cell.
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tions 7 and 13, we can conclude that
 if . ❒

The problem.The distributed approach allows a PPS with a
speedup of  to send cells from each independent demulti-
plexor in a FCFS conflict-free order to each output . The prob-
lem is that cells destined to outputj arrive independently from
all inputs, and so the algorithm does not guarantee that cells des-
tined to output  are available to depart in a conflict-free order.
To illustrate the point, consider Figure 3 — the same PPS as in
Figure 2 with  center stage switches and with a speedup
of . In the example, all cells are once again destined to
output port . Cells arriving to input port  () are shown
shaded (unshaded), respectively. Assuming that the only cells
sent to output port  are from input ports  and , a combined
FCFS order of departure is shown in Figure 3a (there can be
multiple such FCFS departure orders depending on the exact
arrival time of cells). In Figure 3b, the multiplexor at output port

 receives these cells in FCFS departure order. Note that since
cells  and  are consecutive and are queued in layer , cell
cannot reach the output multiplexor until at least
time slots after cell . Similarly, cell  cannot reach the multi-
plexor until at least  time slots after cell . Hence, the shadow
FCFS OQ switch is not mimicked, cells may reach the multi-
plexor in non-FCFS order.

B.  Step 2: The addition of co-ordination buffers at each
multiplexor to enable a PPS to mimic an FCFS OQ switch

If we can bound the time by which a cell can miss its FCFS
departure time, we can place a small co-ordination buffer in the
multiplexor to re-sequence cells and then transmit them in their
correct order. Cells could be arranged to depart at the same time
as in the shadow FCFS OQ switch, but delayed by a constant
relative queueing delay bound.

To this end, we now modify the PPS slightly, placing a small
co-ordination buffer in the multiplexor at each output. (We will
determine later how large the co-ordination buffer need be). The
PPS still operates with speedup , but the operation of
each layer is modified slightly. When a layer has a cell that has
reached its departure time, it immediately attempts to send the
cell to the multiplexor. If the link to the multiplexor is busy, the
layer holds the cell until the link is free. If a cell reaches its out-
put multiplexor ahead of a cell that should depart before it, the
cell is buffered until it can depart in its correct FCFS order.

Theorem 2:(Sufficiency) A PPS with a speedup , with
independent demultiplexors and multiplexors, and with a co-
ordination buffer in each multiplexor can mimic a FCFS OQ
switch with a relative queueing delay bound of  internal
time slots.

We omit the proof for brevity and because the result is sub-
sumed by Step 3 below.

Intuitively, how can the small co-ordination buffer at each
multiplexor allow the demultiplexors to use only local informa-
tion? It is because the independent demultiplexor can send a cell
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to a layer that instantaneously violates the output link constraint.
The co-ordination buffer affords the layer some short-term flex-
ibility, allowing it to wait for the link to the multiplexor to
become free before sending a cell.

C.  Step 3: Eliminating speedup by adding a co-ordination
buffer at each demultiplexor

We can take this idea one step further by introducing an addi-
tional, identical co-ordination buffer at the demultiplexor. The
aim is to give the demultiplexor some short-term flexibility as to
when it need send a cell to the chosen layer. Rather than deliver-
ing the cell to its layer immediately, the demultiplexor holds the
cell until the link is free. The key observation is that even with
no speedup, the link will become free periodically. Intuitively, if
the demultiplexor has enough space to hold the cell until the link
is free, then speedup can be eliminated.

The co-ordination buffer in the demultiplexor. Figure 4
shows how buffers are arranged in each demultiplexor as multi-
ple equal size FIFOs, one per layer. FIFO  holds cells at
demultiplexor  destined for layer . When a cell arrives, the
demultiplexor makes a local decision (described below) to
choose which layer the cell will be sent to. If the cell is to be
sent to layer the cell is queued first in  until the link
becomes free. When the link from input  to layer  is free, the
head of line cell (if any) is removed from  and sent to
layer .

The buffers in each multiplexor are arranged the same way.
And so FIFO  holds cells at multiplexor  from layer .

We will refer to the maximum length of a FIFO (  or
) as the FIFO length.5 Note that if each FIFO is of

length , then the co-ordination buffer can hold a total of
cells.

Before describing the modified algorithm, we need one more
definition.

Definition 16:Buffered Available Input Link Set— The buff-
ered available input link set, , is the set of layers to
which external input port  can start sending a cell between
time slot  and , where  is the FIFO length. This is the
set of layers for which the number of cells queued for that layer
at time slot  is less than the FIFO length.

Note that .

The algorithm. The PPS has no speedup. Each demultiplexor
maintains a buffered available input link set  and, for
each output , a local available output link set

. Demultiplexor  selects local departure
time so as to maintain FCFS order for cells
between inputi and output , then selects layer  which is com-
mon to both  and . The cell is

5. It will be convenient for the FIFO length to include any cells in
transmission.
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stamped with and written to the tail of FIFO
 in the demultiplexor. When the link from demulti-

plexor  to layer  is free, the head-of-line cell (if any) is
sent from . Next, the cell is queued in the output
queue of the center stage switch. When the departure time of
the cell has been reached, the layer sends the cell to the out-
put multiplexor when the link is next free. As before, the co-
ordination buffer in the multiplexor holds the cell until its
correct FCFS departure time.

Key to the operation of the algorithm is the way that the
 set evolves.

Lemma 2: In a PPS with ,
evolves in a round robin manner.

Proof: When , theLAOL set is the set of layers that
have not sent any of the last  cells to external output .
Once an output receives  cells from a given input, there
can be only one layer available in theLAOL set. After that
theLAOL set changes in a fixed round robin order.❒

We can now determine the rate at which cells are written
into, and read from, the demultiplexor’s buffer, and hence
determine its size.

Lemma 3: The number of cells  that demulti-
plexor  writes to FIFO  in time interval  time
slots, is bounded by

Proof: TheLAOL decides which FIFO a cell is written into.
From Lemma 2, theLAOL set changes in a round robin man-
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ner, which means that for every  cells received by a demul-
tiplexor for a specific output, exactly one cell is sent to each

layer.  We can wr i te ,  where

 is the sum of the number cells sent by the demul-

tiplexor  to output  in any time interval of  time slots

and  is the sum of the number of cells sent by the

demultiplexor to all outputs in that time interval . Let

. Then, we have,

since  is bounded by . The proof for  is
obvious.❒

We are now ready to determine the size of the co-ordina-
tion buffer in the demultiplexor.

Theorem 3:(Sufficiency) A PPS with independent demul-
tiplexors and no speedup can send cells from each input to
each output in a conflict free order with a co-ordination

buffer at the demultiplexor of size  cells.

Proof: A cell of size  corresponds to  units of time,
allowing us to re-write Lemma 3 as
(where  is in units of time). Thus the number of cells writ-
ten into each demultiplexor FIFO is bounded by
cells per unit time over all time intervals. This can be repre-
sented as a leaky bucket source with an average rate

 cells per unit time and a bucket size
cells for each FIFO. Each FIFO is serviced deterministically
ar rate  cells per unit time. Hence from [17], a
FIFO of length  will not overflow.❒

It now remains for us to determine the size of the co-ordi-
nation buffers in the multiplexor. This proceeds in an identi-
cal fashion.

Lemma 4: The number of cells that multi-
plexor reads from FIFO  in time interval  time
slots, is bounded by

Proof: Cells destined to multiplexor  from a demultiplexor

 are arranged in a round robin manner, which means that
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for every  cells received by a multiplexor from a specific
input, exactly one cell is read from each layer. We write

, where  is the sum of the

number of cells from demultiplexor  which were delivered to

the external line by multiplexor  in time interval , and

 is the sum of the number of cells from all the demulti-
plexors that were delivered to the external line by the multi-
plexor in time interval . Let . Then we have,

since  is bounded by . The proof for  is obvi-
ous.❒

Finally, we can determine the size of the co-ordination buffers
at the multiplexor.

Theorem 4:(Sufficiency) A PPS with independent multiplex-
ors and no speedup can receive cells for each output in a con-
flict-free ordering with a co-ordination buffer of size  cells.

Proof: The proof is almost identical to Theorem 3. From
Lemma 4, we can bound the rate at which cells in a multiplexor
FIFO need to be delivered to the external line by  per
unit time over any time interval. Cells are sent from each layer
to the multiplexor FIFO at fixed rate  cells per unit
time. Again from [17], if each FIFO is of length  cells, the
FIFO will not overflow.❒

Now that we know the size of the buffers at the input demulti-
plexor and the output multiplexor — both of which are serviced
at a deterministic rate — we can bound the relative queueing
delay with respect to a FCFS OQ switch.

Theorem 5:(Sufficiency) A PPS with independent demulti-
plexors and multiplexors and no speedup, with each multiplexor
and demultiplexor containing a co-ordination buffer of size
cells, can mimic a FCFS OQ switch with a relative queueing
delay bound of  internal time slots.

Proof: We consider the path of a cell in the PPS where the cell
may potentially face a queueing delay. These are as follows:-

1. The cell may be queued at the FIFO of the demulti-
plexor before it is sent to its center stage switch.
From, Theorem 3, we know that this delay is bounded
by  internal time slots.
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2. The cell then awaits service in the output queue of a
center stage switch for  time slots (the number of
time slots it would have been queued in the shadow
OQ switch).

3. The cell may then be queued in the FIFO at the multi-
plexors. From Theorem 4, this is bounded by  inter-
nal time slots.

The queuing delay faced by a cell in the PPS is given by
 internal time slots. Thus, the relative queuing

delay is bounded by  internal time
slots.❒

V. IMPLEMENTATION ISSUES

Given that our main goal is to find ways to make a FCFS PPS
(more) practical, we now re-examine its complexity in light of
the techniques described:

1. Demultiplexor:
• Each demultiplexor maintains a buffer of size  cells run-

ning at the line rate , arranged as  FIFOs. Given that our
original goal of having no buffers run at the line rate, it is
worth determining how large the buffers need be, and
whether they can be placed on-chip. For example, if

 ports, cells are 64-bytes long, and , the
co-ordination buffer is about 5Mbits per multiplexor and
demultiplexor. This can be (just) placed on-chip using
today’s SRAM technology, and so can be made both fast
and wide. However, for much largerN, k or C this approach
may not be practicable.

• The demultiplexor must add a tag to each cell indicating the
arrival time of the cell to the demultiplexor. Apart from
that, no sequence numbers need to be maintained at the
inputs or added to cells.

2. Center stage OQ Switches:
• The input delay, , (the number of internal time slots for

which a cell had to wait in the demultiplexor’s buffer) can
be calculated by the center stage switch using the arrival
timestamp. If a cell arrives to a layer at internal time slot ,
it is first delayed until internal time slot ,
where , to compensate for its variable delay in
the demultiplexor. After the cell has been delayed, it can be
placed directly into the center stage switch’s output queue.

3. Multiplexors:
• Each multiplexor maintains a co-ordination buffer of size

 running at the line rate .
• The multiplexor re-orders cells based upon the arrival

timestamp. Note that if FCFS order only needs to be main-
tained between an input and an output then the timestamps
can be eliminated. A layer simply tags a cell with the input
port number on which it arrived. This would then be a gen-
eralization of the methods described in [4].
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VI. CONCLUSIONS

Typically, the very fastest packet switches have used multi-
ple stages of buffering to avoid the bottleneck of centralized
arbitration decisions, and have used speedup to mitigate the
effects of blocking. While this approach appears to work well
in simulation, analyzing precisely how multi-stage packet
switches perform with multiple stages of buffering is difficult.

A PPS, on the other hand, allows switching capacity to be
increased (almost) arbitrarily, yet still allows us to analyze the
performance, and to mimic the behavior of the well-known
and well-studied FCFS OQ switch.

A PPS also enables the construction of switches in which
each line operates at faster than the bandwidth of a single
buffer memory.

Our results take us a little closer to a general way to con-
tinue the growth in capacity of electronic packet switches
beyond the memory bandwidth limit. Our work continues
with the extension of these results to packet switches that
guarantee packet delay for both unicast and multicast traffic.
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