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ABSTRACT 
Most high performance routers today use combined input and output
queueing (CIOQ). The CIOQ router is also frequently used as an
abstract model for routers: at one extreme is input queueing, at the
other extreme is output queueing, and in-between there is a continuum
of performance as the speedup is increased from 1 to N (where N is the
number of linecards). The model includes architectures in which a
switch fabric is sandwiched between two stages of buffering. There is a
rich and growing theory for CIOQ routers, including algorithms,
throughput results and conditions under which delays can be guaran-
teed. But there is a broad class of architectures that are not captured by
the CIOQ model, including routers with centralized shared memory,
and load-balanced routers. In this paper we propose an abstract model
called Single-Buffered (SB) routers that includes these architectures.
We describe a method called Constraint Sets to analyze a number of SB
router architectures. The model helped identify previously unstudied
architectures, in particular the Distributed Shared Memory router.
Although commercially deployed, its performance is not widely
known. We find conditions under which it can emulate an ideal shared
memory router, and believe it to be a promising architecture. Questions
remain about its complexity, but we find that the memory bandwidth,
and potentially the power consumption of the router is lower than for a
CIOQ router.
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I .  I NTRODUCTION

A.  Background
The first Internet routers consisted of linecards connected to a

shared backplane. Arriving packets were written into a central
pool of shared buffer memory where they waited their turn to
depart. The reasons for using a shared memory architecture are
well known. First, the router’s throughput is maximized: Like
an output queued switch, a shared memory router is work-con-

serving and so achieves 100% throughput and minimizes the
average queueing delay of packets. Network operators prefer
routers that can guarantee 100% throughput so that they can
maximize the utilization of their expensive long-haul links. Sec-
ond, a shared memory router can control the rate given to each
flow and the delay of individual packets using weighted fair
queueing [1] and its variants [2][3][4]. In a shared memory
router, the shared buffer memory must have sufficient band-
width to accept packets from and write packets to all of the line-
cards at the same time. In other words, the shared memory for a
router with N l inecards each connected to a line at rate R, must
have a bandwidth of 2NR.

Since the first routers were introduced, the capacity of com-
mercial routers1 has increased by about 2.2 times every 18
months (slightly faster than Moore’s Law). Routers can continue
to use centralized shared memory only if memory bandwidth
keeps up with the increased capacity of the router. Unfortu-
nately, this is not the case. Router buffers are built from com-
mercial DRAMs, which are optimized for size rather than speed,
and the random access time to commercial DRAMs has
increased by only 1.1 times every 18 months (slower than
Moore’s Law) [5].2 By the mid-1990s, router capacity grew to a
point where central shared memory could no longer be used, and
it became popular to use input queueing instead. The linecards
were connected to a non-blocking crossbar switch which was
configured by a centralized scheduling algorithm. From a practi-
cal point of view, input queueing allows the memory to be dis-
tributed to each linecard, where it can be added incrementally.
More importantly, each memory need only run at a rate 2R
(instead of 2NR) enabling higher capacity routers to be built.
Theoretical results showed that: (1) With virtual output queues
(VOQs) and a maximum weight matching algorithm an input
queued router can achieve 100% throughput [6][20], (2) With a
speedup of two, and with combined input and output queueing
(CIOQ), the router can emulate an ideal shared memory router
[7], and (3) with a speedup greater than two, and WFQ schedul-

1. We define the capacity of a router to be the sum of the maximum data rates of
its linecards, NR. For example, we will  say that a router with 16 OC192c line-
cards has a capacity of approximately 160Gb/s.
2. It is interesting to ask whether SRAM — which tracks the speed of Moore’s
Law — could be used instead. Unfortunately, SRAM is not dense enough. The
largest commercial SRAM device today is approximately 16Mbits. Router buff-
ers are sized to be about  bits. A 160Gb/s router with an RTT of 0.25
seconds requires 40Gbits of buffering, or 2,500 SRAM devices! Given that
router capacity roughly tracks SRAM density, SRAM will  continue to be
impractical for shared memory routers.

RTT R×
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ers at both inputs and outputs, the router can provide delay and
bandwidth guarantees [8][9]. 

Table 1 summarizes some well-known results for CIOQ
routers. While the results in Table 1 might be appealing to the
router architect, the algorithms required by the theoretical
results are not practical at high speed because of the complex-
ity of the scheduling algorithms. And so the theoretical results
have not made much difference to the way routers are built.
Instead, most routers use a heuristic scheduling algorithm such
as iSLIP [10] or WFA [11], and a speedup between one and
two. Performance studies are limited to simulations that sug-
gest most of the queueing takes place at the output, so WFQ
schedulers are usually placed on the egress linecards to pro-
vide differentiated qualities of service. While this might be a
sensible engineering compromise, the resulting system has
unpredictable performance. There are no throughput, fairness
or delay guarantees, and the worst case is not known. 

In summary, CIOQ has emerged as a common router archi-
tecture, but the performance of practical CIOQ routers is diffi-
cult to predict. This is not very satisfactory given that CIOQ
routers make up such a large fraction of the Internet infrastruc-
ture. Our goal is to find more tractable and practical router
architectures, and this leads us to consider a different model,
one that we call the Single Buffered (SB) router. 

B.  Single Buffered routers
Whereas a CIOQ router has two stages of buffering that

“sandwich”  a central switch fabric (with purely input queued
and purely output queued routers as special cases), a SB router
has only one stage of buffering sandwiched between two inter-
connects. Figure 1 illustrates both architectures. A key feature
of the SB architecture is that it has only one stage of buffering.
Another difference is in the way that the switch fabric oper-
ates. In a CIOQ router, the switch fabric is a non-blocking
crossbar switch, while in an SB router, the two interconnects
are defined more generally. For example, the two intercon-
nects in an SB router are not necessarily the same, and the
operation of one might constrain the operation of the other. We
will explore one architecture in which both interconnects are
built from a single crossbar switch.

A number of existing router architectures fall into the SB
model, such as the input queued router (in which the first stage
interconnect is a fixed permutation, and the second stage is a

non-blocking crossbar switch), the output queued router (in
which the first stage interconnect is a broadcast bus, and the
second stage is a fixed permutation), and the shared memory
router (in which both stages are independent broadcast buses).
It is our goal to include as many architectures under the
umbrella of the SB model as possible, then find tools for ana-
lyzing their performance. We divide the SB router into two
classes: (1) Routers with randomized switching or load-bal-
ancing, for which we can at best determine statistical perfor-
mance metrics, such as the conditions under which they
achieve 100% throughput. We call these Randomized SB rout-
ers; and (2) Routers with deterministically scheduled switch-
ing, for which we can hope to find conditions under which
they emulate a conventional shared memory router and/or can
provide delay guarantees for packets. We call these Determin-
istic SB routers. 

In this paper we will only study Deterministic SB routers.
But for completeness, we describe here some examples of both
Randomized and Deterministic SB routers. For example, the
well-known Washington University ATM Switch [15] —
which is essentially a buffered Clos network with buffering in
the center stage — is an example of a Randomized SB archi-
tecture. Similarly, the Parallel Packet Switch (PPS) [16] is an
example of a Deterministic SB architecture, in which arriving
packets are deterministically distributed by the first stage over
buffers in the central stage, and then recombined in the 3rd
stage. 

In the SB model, we allow — where needed — the introduc-
tion of additional (usually small) coordination buffers, so long

TABLE 1  The CI OQ model for  switch architectures.

Type
Number of 
memories

BW of each
memory

Total BW
of memories

Crossbar Speed
(if  applicable)

Comment

Input Queued 100% throughput with maximum weight matching [6], or 
randomized algorithms [13].

Output Queued Work conserving, 100% throughput, delay guarantees.

CIOQ
Speedup of two

With maximal size matching: 100% throughput [14].

With a specific algorithm can emulate OQ with WFQ [7].

N 2R 2NR NR

N N 1+( )R N N 1+( )R

2N 3R 6NR 2NR

Figure 1: A compar ison of the CI OQ and SB router  architectures.

(a) CIOQ Architecture

(b) Single Buffered (SB) Architecture

Inter-
connect
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as they are not used because of congestion. For example, in the
Washington University ATM Switch, resequencing buffers are
used at the output because of the randomized load-balancing at
the first stage. In one version of the PPS, fixed size coordina-
tion buffers are used at the input and output stages [17].

Other examples of the SB architecture include the load-bal-
ancing switch recently proposed by Chang [22] (which is a
Randomized SB and achieves 100% throughput, but mis-
sequences packets), and the Deterministic SB variant by
Keslassy [23] (which has delay guarantees and doesn’t mis-
sequence packets, but requires an additional coordination
buffer). Table 2 shows a collection of results for different SB
routers, some of which — for Deterministic SB routers — are
proved later in this paper.

We’ve found that within each class of SB routers (Determin-
istic and Randomized), performance can be analyzed in a sim-
ilar way. For example, Randomized SB routers are usually

variants of the Chang load-balancing switch, and so they can
be shown to have 100% throughput using the standard Loynes
construction [22][24]. Likewise, the Deterministic SB routers
that we have examined can be analyzed using Constraint Sets
(described in Section II) to find conditions under which they
can emulate ideal shared memory routers. By construction,
Constraint Sets also provide switch scheduling algorithms.

In what follows, we describe two Deterministic SB architec-
tures that seem practically interesting, but have been over-
looked in the academic literature. As we will see, Constraint
Sets can be used to find conditions under which both router
architectures can emulate an ideal shared memory router.3 We
call the first architecture the Parallel Shared Memory (PSM)
router, which has a centralized shared memory that is decom-

TABLE 2 : Routers accor ding to the Single Buffered architecture.

Type
# of 

memories
BW of 

memory
total BW

crossbar BW
(if applicable)

Comment

Input Queued 100% throughput with MWM.

Output Queued Gives best theoretical performance.

Parallel Packet Switch (PPS) 
[16]  

Emulates FCFS OQ.

Emulates OQ with WFQ.

Buffered PPS [17] Emulates FCFS OQ.

Two-Stage (Chang [22]) 100% throughput with mis-sequencing.

Two-Stage (Keslassy [23]) 100% throughput, delay guarantees, no mis-sequencing.

Shared Memory Gives best theoretical performance.

Parallel Shared Memory 
(PSM) or Bus-based Distrib-
uted Shared Memory (DSM) 

(Section II and III)

Emulates FCFS OQ.

Emulates OQ with WFQ.

Crossbar-based Distributed 
Shared Memory

(Section IV)

Emulates FCFS OQ, but crossbar schedule complex.

Emulates FCFS OQ, with simple crossbar schedule.

Emulates OQ with WFQ, but crossbar schedule complex.

Emulates OQ with WFQ, with simple crossbar schedule.

Emulates FCFS OQ.

Emulates OQ with WFQ.

FCFS Crossbar-based PSM 
and DSM (Section V)

FCFS Crossbar-based DSM switch with memories 
slower than R, where xNR and yNR are memory and 

crossbar speeds of the DSM.

PIFO Crossbar-based PSM and 
DSM (Section V)

PIFO Crossbar-based DSM switch with memories slower 
than R, where xNR and yNR are memory and crossbar 

speeds of the DSM.

N 2R 2NR NR

N N 1+( )R N N 1+( )R

kN 2R N 1+( ) k⁄ 2N N 1+( )R

kN 3R N 1+( ) k⁄ 3N N 1+( )R

kN R N 1+( ) k⁄ N N 1+( )R

N 2R 2NR

2N 2R 4NR 2NR

1 2NR 2NR

k 3NR k⁄ 3NR

k 4NR k⁄ 4NR

N 3R 3NR 4NR

6NR

N 4R 4NR 5NR

8NR

N 4R 4NR 4NR

N 6R 6NR 6NR

2h 1–( )xN R h⁄
2h 1–( )xNR

h
------------------------- yNR

3h 2–( )xN R h⁄ 3h 2–( )xNR

h
------------------------- yNR

3. In Section VII we describe a third Deterministic SB Router called the Paral-
lel Packet Switches (PPS) which we studied in previous work.



posed into a number of parallel memories. The second archi-
tecture we call the Distributed Shared Memory (DSM) router,
in which memory is distributed to each linecard. At first
glance, the DSM router looks like an input queued router,
because each linecard contains buffers, and there is no central
shared memory. However, the buffers on a linecard do not nec-
essarily hold packets that arrived from, or are destined to that
linecard. The buffers are a shared and distributed resource
available to all l inecards. From a practical viewpoint, the DSM
router has the appealing characteristic that buffering is added
incrementally with each linecard. This architecture is similar
to that employed by Juniper Networks in a commercial router
[26], although analysis of the router’s performance has not
been published.4 

Perhaps the most interesting outcome of this paper is the
comparison between two routers that emulate an ideal shared
memory router that performs weighted fair queueing (WFQ).
The CIOQ router requires 2N memories, each running at a
speed of 3R, for a total memory bandwidth of 6NR. In Section
IV we show that the DSM router requires N memories running
at a speed of 4R, for a total memory bandwidth of 4NR, with
simple scheduling algorithms. In Section VI we consider the
implementation complexity of different DSM routers. 

C.  Performance metrics
Throughout this paper we will be using memory bandwidth

as a means to compare different router architectures. It serves
as a good metric for two reasons: (1) Routers are, and will
continue to be, limited by the bandwidth of commercially
available memories. All else being equal, a router with smaller
overall memory bandwidth requirements can have a higher
capacity, and (2) A router with higher memory bandwidth will,
in general, consume more power. Core routers are frequently
limited by the power that they consume (because they are
backed up by batteries) and dissipate (because they must use
forced air cooling). The total memory bandwidth indicates the
total bandwidth of the high-speed serial links that connect the
memories to control logic. In current systems, the power dissi-
pated by high speed serial links often accounts for over 50% of
the router’s power. 

We will not be using the commonly used metric known as
“speedup” . The term speedup is used differently by different
authors, and there is no accepted standard definition. For
example, the input queues in a CIOQ router with a “ speedup”
of two perform two read operations for every write. Is the
speedup two or one and a half? So instead, we will use the
term “ bandwidth” . In our example above, the input queues
have a memory bandwidth of 3R.

I I .  THE PARALLEL  SHARED M EMORY ROUTER
An obvious question to ask is: If the capacity of a shared

memory router is larger than the bandwidth of a single mem-
ory device, why don’t we just use lots of memories in parallel,
as shown in Figure 2? This is not as simple as it first seems. If
the width of the memory data bus equals a minimum length
packet (about 40 bytes), then each packet can be (possibly seg-
mented and) written into memory. But if the width of the
memory is wider than a minimum length packet,5 it is not
obvious how to utilize the increased memory bandwidth. We
cannot simply write (read) multiple packets to (from) the same
memory location as they generally belong to different queues.
The shared memory contains multiple queues (at least one
queue per output, usually more). 

But we can control the memories individually, and supply
each device with a separate address. In this way, we can write
(read) multiple packets in parallel to (from) different memo-
ries. We call such a router a Parallel Shared Memory router.

 physical memories are arranged in parallel,
where B is the bandwidth of one memory device. We are inter-
ested in the conditions under which the Parallel Shared Mem-
ory router behaves identically to a shared memory router.
More precisely, if we apply the same traffic to a Parallel
Shared Memory router and to an ideal shared memory router,
we would like to find the conditions under which identical
packets will depart from both at the same time.6 This is equiv-
alent to asking if we can always find a memory that is free for
writing when a packet arrives, and will be also be free for
reading when the packet needs to depart. We will, shortly,
show how; but first we’ ll describe a simple technique, called

4. The Juniper router appears to be a Randomized SB router. In the DSM
router, the address lookup (and hence the determination of the output port) is
performed before the packet is buffered, whereas in [26] the address lookup is
performed afterwards, suggesting that the Juniper router does not use the out-
going port number, or departure order, when choosing which linecard will
buffer the packet. 

5. For example, a 160Gb/s shared memory router built from memories with a
random access time of 50ns requires the data bus to be at least 16,000 bits
wide (50 minimum length packets).
6. We shall ignore time differences due to propagation delays, pipelining etc.
and consider only queueing delays in this comparison.

1

N

R

R
N

2NR

Figure 2: Memor y hier archy of the PSM router, showing a large
DRAM memory. The DRAM  memor y has a total bandwidth of
at least 2NR. The logical DRAM  memory consists of multiple
separ ate DRAM s each of which r un at a slower  r ate.

Read Access Time = TWrite Access Time = T

DRAM consisting of k memories with random access time T

Arriving Packets Departing Packets

1
R

R

k 2NR B⁄≥



Constraint Sets, that we will use repeatedly to analyze Deter-
ministic SB routers. 

A.  Constraint Sets

1) Pigeons and pigeon holes
Consider M pigeon holes, where each hole may contain sev-

eral pigeons. Each time slot, up to N pigeons arrive which
must immediately be placed into a pigeon hole. Likewise, each
time slot up to N pigeons depart. Now suppose we constrain
the pigeon hole so that in any one time slot at most one pigeon
may arrive to it, or at most one pigeon may depart from it. We
do not allow a pigeon to enter a pigeon hole while another one
is departing.

Now we ask the question: How many pigeon holes do we
need so that the N departing pigeons are guaranteed to be able
to leave, and the N arriving pigeons are guaranteed a pigeon
hole?

Consider a pigeon arriving at time t that will depart at some
future time, . We need to find a pigeon hole, H, that
meets the following three constraints: (1) No other pigeon is
arriving to H at time t; (2) No pigeon is departing from H at
time t; and (3) No other pigeon in H wants to depart at time

. Put another way, the pigeon is barred from no more than
 pigeon holes by  other arrivals, N departures and

 other future departures. Hence by the well-known
pigeon-hole principle, if  our pigeon can find a
hole. 

2) Using Constraint Sets
In a Deterministic SB router, the arriving (departing) pack-

ets are written to (read from) memories that are constrained to
either read or write in any one time slot. We can use the
pigeonhole technique to determine how many memories are
needed, and to design an algorithm to decide which memory
each arriving packet is written into. We use the following three
steps:

1. Determine packet’s depar ture time, : If packets
depart in FCFS order to a given output, and if the router is
work-conserving, the departure time is simply one more
than the departure time of the previous packet. If the pack-
ets are scheduled to depart in a more complicated way, for
example using WFQ, then it is harder to determine its
departure time. We’ ll consider this in more detail in Sec-

tion C. For now, we’ ll assume that the  is known for
each packet.

2. Define the Constraint Sets: Identify the constraints on the
resource (such as buffer, switch fabric, etc.) for each
incoming packet.

3. Apply the Pigeon-hole pr inciple: Add up all the con-
straints, and apply the pigeon-hole principle.

Overall, the technique of using constraint sets is a generali-
zation of the approach used by Clos to find the conditions

under which a 3-stage circuit switch is strictly non-blocking
[25].

B.  A Parallel Shared Memory router can emulate 
an FCFS shared memory router

Using Constraint Sets it is easy to see how many memories
are needed for the Parallel Shared Memory router to emulate
an ideal shared memory router. 

Theorem 1: (Sufficiency) A total  memory bandwidth of
3NR is sufficient for a Parallel Shared Memory Router to emu-
late an ideal FCFS shared memory router.

Proof: (Using Constraint Sets) See Appendix A. 
�

The algorithm described in the Appendix sequentially
searches the linecards to find a non-conflicting location for an
arriving packet. Hence the complexity of the algorithm is

. Also the algorithm needs to know the location of every
packet buffered in the router. While this appears expensive, we
will explore ways to reduce the complexity in Section VI.

C.  QoS in a Parallel Shared Memory Router
Some routers provide weighted fairness among flows, or

delay guarantees using WFQ or GPS [1][27]. We will now
find the conditions under which a Parallel Shared Memory
Router can emulate an ideal shared memory router that imple-
ments WFQ. We will use the generalization of WFQ known as
a “ Push-in First-out”  (PIFO) queue [7]. A PIFO queue is
defined as follows:

1. Arriving packets are placed at (or, “pushed-in”  to) an arbi-
trary location in the departure queue.

2. The relative ordering of packets in the queue does not
change once packets are in the queue.

3. Packets depart from the head of line.

PIFO queues include strict priority queues, and a variety of
work-conserving QoS disciplines such as WFQ. In what fol-
lows we will explore how a PSM router can emulate a shared
memory router that maintains N separate PIFO queues. 

1) Constraint Sets and PIFO queues in a Parallel Shared 
Memory router 

We saw above that if we know a packet’s departure time
when it arrives — which we do for FCFS — we can immedi-
ately identify the memory constraints to ensure the packet can
depart at the right time. But in a router with PIFO queues, the
departure time of a packet can change as new packets arrive
and push-in ahead of it. This complicates the constraints; but
as we will see, we can introduce an extra Constraint Set so as
to choose a memory to write the arriving packet into. 

First, we’ ll explain how this works by way of an example;
the general principle follows easily. Consider a Parallel Shared
Memory router with three ports, and assume that all packets
are of fixed size. We’ ll denote each packet by its initial depar-
ture order: Packet  is the third packet, packet  is the
fourth packet to depart, and so on. Figure 3a shows a sequence

D t( )

D t( )
3N 2– N 1–
N 1–

M 3N 1–≥

D t( )

D t( )

O N( )

a3( ) a4( )



of departures, assuming that all the packets in the router are
stored in a single PIFO queue. Since the router has three ports,
three packets leave the router from the head of the PIFO queue
in every time slot. Suppose packet  arrives, and is inserted
between  and  (see Figure 3b). If no new packets
push-in, packet  will depart at time slot 1, along with
packets  and  (which arrived earlier and are already
in memory). So that they can depart at the same time, packets

,  and  must be in different memories. There-
fore,  must be written into a different memory. 

Things get worse when we consider what happens when a
packet is pushed from one time slot to the next. For example,
Figure 3c shows  arriving and pushing  into time
slot 2. Packet  now conflicts with packets  and

, which were in memory when  arrived, and are
also scheduled to depart in time slot 2. So that they can depart
at the same time, packets ,  and  must be in
different memories. 

In summary, when  arrives and is inserted into the
PIFO queue, there are only four packets already in the queue
that it could ever conflict with: ,  ahead of it, and

,  behind it. Therefore, we only need to make sure
that  is written into a different memory from these four
packets. Of course, new packets that arrive and are pushed in
among these four packets will be constrained and must pick
different memories, but these four packets are unaffected. 

In general, we can see that when packet P arrives to a PIFO
queue, it should not use the memories used by the  pack-
ets scheduled to depart immediately before or after P, and so
constrains the packet not to use  memories.

2) Complications when there are N PIFO queues
The example above is not quite complete. A PSM router

holds N independent PIFO queues in one large pool of shared
memory. When a memory contains multiple PIFO queues, the
memory as a whole does not operate as a single PIFO queue,
and so the constraints are more complicated. We’ ll explain by
way of another example. 

Consider the same Parallel Shared Memory router with
three ports a, b, and c. We’ ll denote each packet by its output
port and its departure order at that output: Packet  and

 are the third packets to depart from output b and c, and
so on. Figure 4a shows an example of packets waiting to
depart; one packet is scheduled to depart from each output
during each time slot.

Assume that packet  arrives for output port a and is
inserted between  and  (two packets scheduled to
depart consecutively from port a).  delays the departure
time of all the packets behind it destined to output a, but
leaves unchanged the departure time of packets destined to
other outputs. The new departure order is shown in Figure 4b.

Taken as a whole, the memory (which consists of N PIFO
queues) does not behave as one large PIFO queue. This is
illustrated by packet  which is pushed back to time slot 4,
and is now scheduled to leave after . The relative order of
( ) and ( ) has changed after they were in memory, and so
(by definition of a PIFO) the queue is not a PIFO. 

The main problem is that the number of potential memory
conflicts is unbounded. This could happen if a new packet for
output a was inserted between  and . Beforehand,

 conflicted with  and ; afterwards, it conflicts
with  and , both of which might already have been
present in memory when  arrived. This argument can be
continued. Thus when packet  arrives, there is no way to
bound the number of memory conflicts that it might have with
packets already present. In general, the arrivals of packets cre-
ate new conflicts between packets already in memory. 

3) Modifying the departure order to prevent memory 
conflicts amongst packets destined to different outputs

We can prevent packets destined to different outputs from
conflicting with each other by slightly modifying the departure
order. Instead of sending one packet to each output per time-
slot, we can instead transmit several packets to one output, and
then cycle through each output in turn. More formally, con-
sider a router with n ports and k shared memories. If the depar-
ture order was: 

i.e., in each time slot a packet is read from memory for each
output port, we will permute it to give:

i.e., exactly k packets are scheduled to depart each output dur-
ing the k time slots, and each output can simply read from the
k shared memories without conflicting with the other outputs.

a1 a2 a3 a4 a5 a6 a7 a8 a9 a10 a11 a12 

a1 a2 a3’ a3 a4 a5 a6 a7 a8 a9 a10 a11 a12 

Figure 3: Maintaining a single PI FO queue in a PSM router. 

 

 

(a) Initial Queue order 

(b) Queue order after arrival of cell a3’

a1’  a1 a2 a3’  a3 a4 a5 a6 a7 a8 a9 a10 a11 

(c) Queue order after arrival of cell a1’

a12 

Order of departures for a single PI FO queue
t Time Slot: 1 Time Slot: 2 Time Slot: 3 Time Slot: 4

a3′
a2( ) a3( )

a3'( )
a1( ) a2( )

a1( ) a2( ) a3'( )
a3'( )

a1'( ) a3'( )
a3'( ) a3( )

a4( ) a3'( )

a3'( ) a3( ) a4( )

a3′( )

a1( ) a2( )
a3( ) a4( )

a3′( )

N 1–

2 N 1–( )

b3( )

c3( )

a1 b1 c1 a2 b2 c2 a3 b3 c3 a4 b4 c4 

a1 b1 c1 a2’ b2 c2 a2 b3 c3 a3 b4 c4 a4 

Figure 4: Maintaining N PI FO queues in a PSM  router.
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When an output completes reading the k packets, all the mem-
ories are now available for the next output to read from. This
resulting conflict-free permutation prevents memory conflicts
between outputs.

The conflict-free permutation changes the departure time of
a packet by at most  time slots. To ensure that packets
departs at the right time, we need a small coordination buffer
at each output to hold up to  packets. Packets may now
depart at most  time slots later than planned.

We can now see how a Parallel Shared Memory can emulate
a shared memory router with PIFO queues. First we modify
the departure schedule using the conflict-free permutation
above. Next, we apply Constraint Sets to the modified sched-
ule to find the memory bandwidth needed for emulation using
the new constraints. The emulation is not quite as precise as
before: the Parallel Shared Memory router can lag the ideal
shared memory router by up to  time slots. 

Theorem 2: (Sufficiency) With a total memory bandwidth
of 4NR a Parallel Shared Memory router can emulate a PIFO
shared memory router, within  time slots.

Proof: (Using Constraint Sets). See Appendix A. 
�

I I I .  DISTRIBUTED SHARED MEMORY ROUTERS
Up until now we have considered only the Parallel Shared

Memory router. While this router architecture is interesting, it
has the drawback that all k memories are in a central location.
In a commercial router, we would prefer to add memories only
as needed, along with each new linecard. And so we now turn
our attention to the Distributed Shared Memory router shown
in Figure 5. We assume that the router is physically packaged
as shown in Figure 5a; each linecard contains some memory

buffers (like in an input queued router). But the memories on a
linecard don’t necessarily hold packets that arrived to or will
depart from that linecard. In fact, the N different memories
(one on each linecard) can be thought of as collectively form-
ing one large shared memory. When a packet arrives, it is
transferred across the switch fabric (which could be a shared
bus backplane, a crossbar switch or some other kind of switch
fabric) to the memory in another linecard. When it is time for
the packet to depart, it is read from the memory and passed
across the switch fabric again, and sent through its outgoing
linecard directly onto the output line. 

Notice that each packet is buffered in exactly one memory,
and so the router is an example of a Single Buffered router.
The Distributed Shared Memory router is logically equivalent
to a Parallel Shared Memory as long as the shared bus has suf-
ficient capacity. Instead of all the memories being placed cen-
trally, they are moved to the linecards. Therefore, the theorems
for the PSM router also apply to the Distributed Shared Mem-
ory router. 

While these results might be interesting, the bus bandwidth
is too large. For example, a 160Gb/s router would require a
shared multidrop broadcast bus with a capacity of 480Gb/s (or
640Gb/s). This is not practical with today’s serial link and
connector technology.

IV.  CROSSBAR-BASED DSM ROUTER
We can replace the shared broadcast bus with an 

crossbar switch, then connect each linecard to the crossbar
switch using a short point-to-point link. This is similar to the
way input queued routers are built today, although in a Distrib-
uted Shared Memory router every packet traverses the cross-
bar switch twice. 

k 1–

k
k 1–

k 1–

k 1–

Figure 5: (b) Logical view of the DSM router. An arr iving packet
can be buffered in the memory of any linecard, say x. I t is later
read by the output port from the inter mediate linecar d x.

Figure 5: (a) Physical view of the DSM router. The switch fab-
r ic can be either  a backplane or  a crossbar. The memor y on a
single linecar d can be shared by packets arr iving from other
linecar ds.
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The crossbar switch needs to be configured each time pack-
ets are transferred, and so we need a scheduling algorithm that
will pick each switch configuration. (Before, when we used a
broadcast bus, we didn’t need to pick the configuration as
there was sufficient capacity to broadcast packets to the line-
cards). In what follows we’ ll see that there are several ways to
schedule the crossbar switch, each with its pros and cons. We
will find different algorithms; and for each, we will find the
speed that the memories and crossbar need to run at. 

We will define the bandwidth of a crossbar to be the speed
of the connection from a linecard to the switch, and will
assume that the link bandwidth is the same in both directions.
So for example, just to carry every packet across the crossbar
fabric twice, we know that each link needs a bandwidth of at
least 2R. We find that, in general, we need a higher bandwidth
than this in order to emulate a shared memory router. The
additional bandwidth serves three purposes: (1) It provides
additional bandwidth to write into (read from) the memories
on the linecards to overcome the memory constraints, (2) It
relaxes the requirements on the scheduling algorithm that con-
figures the crossbar, and (3) Because the link bandwidth is the
same in both directions, it allocates a bandwidth for the peak
transfer rate in one direction, even though we don’t usually
need the peak transfer rate in both directions at the same time. 

A.  A Crossbar-based DSM router can emulate an 
FCFS shared memory router

We start by showing trivially sufficient conditions for a
Crossbar-based DSM router to emulate an FCFS shared mem-
ory router. We will follow this with some tighter results which
show how the crossbar bandwidth can be reduced at the cost of
either increased memory bandwidth, or a more complex cross-
bar scheduling algorithm. 

Lemma 1: A Crossbar-based DSM router can emulate an
FCFS shared memory router with a total memory bandwidth
of 3NR and a crossbar speed of 6R.

Proof: Consider operating the crossbar in two phases: f irst,
read al l  departing packets from memory and transfer them
across the crossbar. From Theorem 1, this requires at most
three transfers per linecard per time slot. In the second phase,
write all arriving packets to memory, requiring at most three
more transfers per linecard per time slot. This corresponds to
running the l ink connecting the linecard to the crossbar at a
speed of 6R. 

�

Lemma 2: A Crossbar-based DSM router can emulate a
PIFO shared memory router with a total memory bandwidth of
4NR and a crossbar  speed of 8R within a relative delay of

 time slots.

Proof: This will follow directly from Theorem 2 and the proof
of Lemma 1. How the crossbar is scheduled is described in the
proof of Theorem 4. 

�

B.  Minimizing the bandwidth of the crossbar 
We can represent the set of memory operations in a time slot

using a bipartite graph with 2N vertices, as shown in Figure
6a. An edge connecting input i to output j represents an (arriv-
ing or departing) packet that needs to be transferred from i to j.
In the case of an arrival, the output incurs a memory write; and
in the case of a departure, the input incurs a memory read. The
degree of each vertex is limited by the number of packets that
enter (leave) the crossbar from (to) an input (output) linecard.
Recall that for an FCFS router, there are no more than three
memory operations at any given input or output. Given that
each input (output) vertex can also have an arrival (departure),
the maximum degree of any vertex is four.

Theorem 3: (Sufficiency) A Crossbar-based DSM router
can emulate an FCFS shared memory router with a total mem-
ory bandwidth of 3NR and a crossbar speed of 4R.

Proof: From the above discussion, the degree of the bipartite
request graph is at most 4. From [28] and Theorem 1, a total
memory bandwidth of 3NR and a crossbar speed of 4R is suffi-
cient. 

�

Theorem 4: (Sufficiency) A Crossbar-based DSM router
with a total memory bandwidth of 4NR and a crossbar speed
of 5R, can emulate a PIFO shared memory router within a rel-
ative delay of  time slots.

Proof: The proof is in two parts. First we shal l prove that a
conflict-free permutation schedule  over N time slots can be
scheduled with a crossbar bandwidth 5R. Unlike the Crossbar-
based Distributed Shared Memory switch, the modif ied con-
flict-free permutation schedule  cannot be directly sched-
uled on the crossbar, because the conflict-free permutation
schedules N cells to each output per time slot. However, we
know that the memory management algori thm schedules no
more than 4 memory accesses to any port per time slot. Since
each input (output) port can have no more than N arrivals
(departures) in the N time slots, the total out-degree per port in
the request graph for  (over N time slots), is no more than

. From König’s method, there exists a schedule
to switch the packets in , with a crossbar bandwidth of 5R. 

Now we show that a packet may incur a relative delay of no
more than  time slots when the conflict-free permuta-
tion is scheduled on a crossbar. Assume that the crossbar is
configured to schedule cells departing between time slots

2N 1–

Figure 6: A request graph and a request matr ix resulting
from the M MA for  an  switch. N N×
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 (and these configurations are now final) and that
other cells prior to that have departed. The earliest departure
time of a newly arriving packet is time slot . However, a
newly arriving cell cannot be granted a departure time
between , since the crossbar is already being config-
ured for that time interval. Hence,  will give the cell a
departure time between , and the cell will leave
the switch sometime between time slots . Hence
the maximum relative delay that a cell can incur is 
time slots. From Theorem 2, the memory bandwidth required
is no more than 4NR. 

�

C.  A tradeoff between crossbar bandwidth and 
scheduler complexity

Theorem 3 is the lowest bound that we have found for the
crossbar bandwidth (4R) and we suspect that it is a necessary
condition to emulate an FCFS shared memory router. Unfortu-
nately, edge-coloring has complexity  [29], and is
too complex to implement at high speed. We now explore a
more practical algorithm which also needs a crossbar band-
width of 4R, but requires the memory bandwidth to be
increased to 4NR.

The crossbar is scheduled in two phases: 1) Write-Phase:
Arriving packets are transferred across the crossbar switch to
memory on a linecard, and 2) Read-Phase: Departing packets
are transferred across the crossbar from memory to the egress
linecard. 

Theorem 5: (Sufficiency) A Crossbar-based DSM router
can emulate an FCFS shared memory router with a total mem-
ory bandwidth of 4NR and a crossbar speed of 4R.

Proof: (Using Constraint Sets). See Appendix B.
�

Theorem 6: (Sufficiency) A Crossbar-based DSM router
can emulate a PIFO shared memory router within a relative
delay of  time slots, with a total memory bandwidth of
6NR and a crossbar speed of 6R.

Proof: (Using Constraint Sets) See Appendix B. 
�

In summary, we have described three different results. Let’s
compare them based on memory bandwidth, crossbar band-
width, and the complexity of scheduling the crossbar switch,
when the router is emulating an ideal FCFS shared memory
router. First, we can trivially schedule the crossbar-with a
memory bandwidth of 3NR and a crossbar bandwidth of 6R
(Lemma 1). With a more complex scheduling algorithm, we
can schedule the crossbar with a memory bandwidth of 4NR
and a crossbar bandwidth of 4R (Theorem 5). But our results
suggest that although possible, it is complicated to schedule
the crossbar when the memory bandwidth is 3NR and the
crossbar bandwidth is 4R. We now describe a scheduling algo-
rithm for this case, although we suspect there is a simpler
algorithm that we have been unable to find. 

The bipartite request graph used to schedule the crossbar has
several properties that we can try to exploit:

1. The total number of edges in the graph cannot exceed 2N,

i.e. . This is also true for any subset of verti-

ces; if I and J are subsets of indices , then
. We complete the request graph by

adding requests so that it has exactly 2N edges.

2. In the complete graph, the degree of each vertex is at least
one, and is bounded by four. i.e.  and

.

3. The maximum number of edges between an input and an
output is 2, i.e. . We call such a pair of edges a dou-
ble edge.

4. Each vertex can have at most one double edge, i.e., if
, then  and .

5. In a complete request graph, if an edge connects to a vertex
with degree one, the other vertex it connects to must have a
degree greater than one. This means, if

, then ; if

, then, . To see why this is,

suppose an edge connects input i, which has degree one,
and output j. This edge represents a packet arriving at i and
stored at j. But j has a departure which initiates another
request, thus the degree of j is greater than one. By symme-
try, the same is true for an edge connecting an output of
degree one.

Our goal is to exploit these properties so as to find a cross-
bar scheduling algorithm that can be implemented on a wave-
front arbiter (WFA [11]). The WFA is widely used to find
maximal size matches in a crossbar switch. It can be readily
pipelined and decomposed over multiple chips [12].

Definition 1: I nequalities of vectors -  and  are vectors
of the same dimension. The index of the first non-zero entry in

 ( ) is  ( ). We wi l l  say that  i ff , and
 iff .

Definition 2: Ordered - The row (column) vectors of a matrix
are said to be ordered if they do not increase with the row
(column) index. A matrix is ordered if both its row and column
vectors are ordered.

Lemma 3: A request matrix can be ordered in no more
than  alternating row and column permutations.

Proof:  See Appendix C. 
�

Theorem 7: If a request matrix S is ordered, then any max-
imal matching algorithm that gives strict priority to entries
with lower indices, such as the WFA [11] , can find a conflict-
free schedule.
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Proof:  See Appendix C. 
�

This algorithm is arguably simpler than edge-coloring,
although it depends on the method used to perform the 
row and column permutations. 

V.  ROUTERS WITH PARALLEL  AND DISTRIBUTED 
SHARED MEMORY

The DSM router architecture assumes that there is one
memory device on each linecard. For line-rates up to 10Gb/s,
this seems reasonable today using a single commercially avail-
able DRAM on each linecard. For line-rates above 10Gb/s, we
need multiple memories on each linecard to achieve the band-
width we need. In other words, each linecard is now similar to
the Parallel Shared Memory router in Section II. We can use
Constraint Sets to determine how many memory devices are
needed. 

Theorem 8: A set of  memories of rate  run-
ning in parallel can emulate a memory of rate R in an FCFS
DSM router.

Proof: The analysis is similar to Theorem 1. However the read
and write constraints at the current time collapse into a single
constraint, resulting in requiring only  memories. 

�

Theorem 9: A set of  memories of rate  run-
ning in paral lel  can emulate a memory of rate R in a PIFO
DSM router.

Proof: Similar to Theorem 8. 
�

VI.  PRACTICAL  CONSIDERATIONS
In this section, we investigate whether or not we could actu-

ally build a DSM router that emulates a shared memory router.
As always, we’ ll find that the architecture has limits to its scal-
ability, and these arise for the usual reasons when the system is
big; algorithms that take too long to complete, buses that are
too wide, connectors and devices that require too many pins,
or an overall system power that is impractical to cool. Many of
these constraints are imposed by currently available technol-
ogy, and so even if our assessment is accurate today, it might
be meaningless in the future. And so wherever possible, we
will make relative comments, such as “ Architecture A has half
the memory bandwidth of Architecture B”  to allow compari-
sons independent of the technology.

We’ ll pose a series of questions about the feasibility, and try
to answer each one in turn. 

1. A PIFO DSM router requires a lot of memory devices. Is it
feasible to build a system with so many memories?
We can answer this question relative to a CIOQ router with
a speedup of two. The CIOQ router has an aggregate mem-
ory bandwidth of 6NR and requires 2N physical memory
devices (although we could use one memory per linecard
with twice the bandwidth). The PIFO DSM router has a
memory bandwidth of 4NR and requires at least N physical
memories. It seems clear that we can build a PIFO DSM
router with at least the same capacity as a CIOQ router.

The fastest single-rack CIOQ router in development today
has a capacity of approximately 1Tb/s (although the
speedup is probably less than two, and the scheduling algo-
rithm is a heuristic). This suggests that considering only
the number of memories and their bandwidth, it is possible
to build a 1Tb/s single-rack DSM router.

2. A crossbar-based PIFO DSM router requires a crossbar
switch with links operating at least as fast as 5R. A CIOQ
router requires links operating at only 2R. What are the
consequences of the additional bandwidth for the DSM
router? 
Increasing the bandwidth between the linecard and the
switch will more than double the number of wires and/or
their data rate, and place more requirements on the packag-
ing, board layout, and connectors. It will also increase the
power dissipated by the serial links on the crossbar chips in
proportion to the increased bandwidth. But it might be pos-
sible to exploit the fact that the links are used asymmetri-
cally. For example, we know that the total number of
transactions between a linecard and the crossbar switch is
limited to five per time slot. If each link in the DSM router
was half-duplex, rather than simplex, then the increase in
serial links, power and size of connectors is only 25%.
Even if we can’ t use half-duplex links, the power can be
reduced by observing that many of the links will be unused
at any one time, and therefore need not have transitions.
But overall, in the best case, it seems that the DSM router
requires at least 25% more bandwidth.

3. In order to choose which memory to write a packet into, we
need to know the packet’s departure time as soon as it
arrives. This is a problem for both a DSM router and a
CIOQ router that emulate a shared memory router. In the
CIOQ router, the scheduling algorithm needs to know the
departure time so as to ensure the packet traverses the
crossbar in time. While we can argue that the DSM router
is no worse, this is no consolation when the CIOQ router
itself is impractical! Let’s first consider the simpler case
when a DSM router is emulating an FCFS shared memory
router. Given that the system is work-conserving, the
departure time of a packet is simply equal to the sum of the
data in the packets ahead of it. In principle, a global
counter can be kept for each output, and updated each time
slot depending on the number of new arrivals. All else
being equal, we would prefer a distributed mechanism, as
ultimately the maintenance of a global counter will limit
scalability. However, the communication and processing
requirements are probably smaller than for the scheduling
algorithm itself (which we consider next). 

4. How complex is the algorithm that decides which memory
each arriving packet is written into?
There are several aspects to this question. 

• Space requirements: In order to make its decision, the
algorithm needs to consider k different memory addresses,
one for each packet that can contribute to a conflict. How
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complex the operation is, depends on where the informa-
tion is stored. If, as currently seems necessary, the algo-
rithm is run centrally, then it must have global knowledge
of all packets. While this is also true in a CIOQ router that
emulates a shared memory router, it is not necessary in a
purely input or output queued router.

• Memory Accesses: For an FCFS DSM router, we must
read, update and then write bitmaps representing which
memories are busy at each future departure time. This
requires two additional memory operations in the control
structure. For a PIFO DSM router, the cost is greater as
the control structures are most likely arranged as linked
lists, rather than arrays. Finding the bitmaps is harder, and
we don’t currently have a good solution to this problem. 

• Time: We have not found a distributed algorithm, and so
currently we believe it to be sequential, requiring 
operations to schedule at most N new arrivals. However, it
should be noted that each operation is a simple compari-
son of three bitmaps to find a conflict-free memory.

• Communication: The algorithm needs to know the desti-
nation of each arriving packet, which is the minimum
needed by any centralized scheduling algorithm. 

5. We can reduce the complexity by aggregating packets at
each input into frames of size F, and then schedule frames
instead of packets. Essentially, this is equivalent to increas-
ing the size of each “cell” . The input linecard maintains
one frame of storage for each output, and a frame is sched-
uled only when F bits have arrived for a given output, or
until a timeout expires. There are several advantages to
scheduling large frames rather than small cells. First, as the
size of frame increases, the scheduler needs to keep track
of fewer entities (one entry in a bitmap per frame rather
than per cell), and so the size of the bitmaps (and hence the
storage requirements) falls linearly with the frame size.
Second, because frames are scheduled less often than cells,
the frequency of memory access to read and write bitmaps
is reduced, as is the communication complexity, and the
complexity of scheduling. As an example, consider a
router with 16 OC768c linecards (i.e. a total capacity of
640Gb/s). If the scheduler were to run every time we
scheduled a 40-byte cell, it would have to use off-chip
DRAM to store the bitmaps, and access them every 8ns. If
instead we use 48kB frames, the bitmaps are reduced by
more than 1,000-fold and can be stored on-chip in fast
SRAM. Furthermore, the bitmap interaction algorithm
need run only once every s, which is readily imple-
mented in hardware. The appropriate frame size to use will
depend on the capacity of the router, the number of line-
cards and the technology used for scheduling. This tech-
nique can be extended to support a small number of
priorities in a PIFO DSM router, by aggregating frames at
an input for every priority queue for every output. One dis-
advantage of this approach is that the strict FCFS order

among all inputs is no longer maintained. However, FCFS
order is maintained between any input-output pair, which is
all that is usually required in practice.

6. Which requires larger buffers: a DSM router or a CIOQ
router?
In a CIOQ router, packets between a given input and output
pass through a fixed pair of buffers. The buffers on the
egress linecards are sized so as to allow TCP to perform
well, and the buffers on the ingress linecard are sized to
hold packets while they are waiting to traverse the crossbar
switch. So the total buffer size for the router is at least

 because any one egress linecard can be a bot-
tleneck for the flows that pass through it. On the other
hand, in a DSM router we can’ t predict which buffer a
packet will reside in; the buffers are shared more or less
equally among all the flows. It is interesting to note that if
the link data rates are symmetrical, not all of the egress lin-
ecards of a router can be bottlenecked at the same time. As
a consequence, statistical sharing reduces the required size
of the buffers. This reduces system cost, board area and
power. As a consequence of the scheduling algorithm, the
buffers in the DSM router may not be equally filled. We
have not yet evaluated this effect. 

1) Open problems
Our conclusion is that a PIFO DSM router is less complex

than a PIFO CIOQ router (has lower memory bandwidth,
fewer memories, a simpler scheduling algorithm, but slightly
higher crossbar bandwidth). However, it seems that the PIFO
DSM router has two main problems: (1) The departure times
of each packet must be determined centrally with global
knowledge of the state of the queues in the system, and (2) A
sequential scheduler must find an available memory for each
packet in turn. Although we have not solved either problem,
we present them in the hope that others might overcome them
(or find good heuristics), and make the PIFO DSM router
more practical.

On the other hand, departure times are much easier to calcu-
late in an FCFS DSM router. 

VI I .  OTHER WORK  ON CONSTRAINT SETS
In prior work, we used Constraint Sets to analyze the Paral-

lel Packet Switch (PPS) as a Deterministic SB Router
[16][17]. A characteristic of this architecture is that all the
buffers in the router run slower than the line-rate. We derived
the conditions under which a PPS can emulate an OQ router
using the Constraint Sets method. The two main results in [16]
are that a PPS can emulate a FCFS OQ router with a speedup
of two, and a PIFO OQ router with a speedup of three. The
reason we need more speedup to emulate PIFO than FCFS is
that an additional constraint is introduced, exactly as in Sec-
tion II.C. 

In [18] we use Constraint Sets to analyze CIOQ routers
(which unlike SB routers, have two stages of buffering), and
find that the technique can lead to simpler proofs of known
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results. For example, using the discrete combinatorial argu-
ments of Constraint Sets (similar to Charny [19]), we find that
a CIOQ switch, with a crossbar bandwidth of 2NR and a mem-
ory bandwidth of 6NR, achieves 100% throughput for a maxi-
mal matching algorithm. This result was first proved by Dai
and Prabhakar (using fluid models) [20], and later by Leonardi
et. al. [21] using Lyapunov functions. Furthermore, unlike the
work in [20] and [21], Constraint Sets lead to a hard bound on
the worst case delay faced by a packet in the CIOQ router. 
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APPENDIX  A

A.  Proof of Theorem 1
Assume that the aggregate memory bandwidth of the k

memories is SNR, where . We can think of the access
time T as equivalent to  decision slots.7 We will now
find the minimum value of S needed for the switch to emulate
an FCFS shared memory router. Assume that all packets are
segmented into cells of size C, and reassembled into variable
length packets before they depart. In what follows, we define
two constraint sets; one set for when cells are written to mem-
ory and another for when they are read.

Definition 3: Busy Write Set (BWS) - When a cell is written
into a memory, the memory is busy for  decision slots.

7. We shall denote N decision slots to comprise a time slot.

O E Dlog( )

S 1>
k S⁄

k S⁄



 is the set of memories which are busy at time  due to
cel ls being written, and therefore cannot accept a new cel l.
Thus,  is the set of memories which have started a
new write operation in the previous  decision slots.
Clearly .

Definition 4: Busy Read Set (BRS) - Likewise, the  is
the set of memories busy reading cells at time t. It is the set of
memories which have started a read operation in the previous

 decision slots. Clearly .

Theorem 1: (Sufficiency) A total memory bandwidth of
3NR is sufficient for a Parallel Shared Memory Router to emu-
late an ideal FCFS shared memory router.

Pr oof: Consider a cel l  c that arrives to the shared memory
switch at time t destined for output port j. If c’s departure time
is  and we apply the Constraint Set technique, then
the memory l that c is written into must meet these constraints:

1. Memory l must not be busy writing or reading a cell at time
t. Hence , and .

2. We must pick a memory that is not busy when the cell
departs from the switch at : Memory l must not be
busy reading another cell when c is ready to depart: i.e.

. 

Hence our choice of memory l must meet the following con-
straints:

(1)
A sufficient condition to satisfy this is:

(2)
From Definitions 3 and 4, we know that Equation (2) is true

if: , i.e., , corresponding to a total
memory bandwidth of 3NR. �

Remar k: It is possible that an arriving cell  must depart
before it can be written to the memory i.e. . In
that case the cell is immediately transferred to the output port
j, bypassing the shared memory buffer.

B.  Proof of Theorem 2

Theorem 2: (Sufficiency) With a total memory bandwidth
of 4NR a Parallel Shared Memory router can emulate a PIFO
shared memory router, within  time slots.

Pr oof: Consider a cel l  c that arrives to the shared memory
router at time t destined for output j , with departure time

 based on the conflict-free permutation. The memory
l that c is written into must meet these constraints:

1. Memory l must not be busy writing or reading a cell at time

t. This gives two memory constraints i.e. , and

, similar to the conditions derived for an FCFS
PSM router in Theorem 1.

2. Memory l must not have stored the  cells imme-
diately in front of cell c in the PIFO queue for output j,
because it is possible for cell c to be read out in the same
time slot as some or all of the  cells immedi-
ately in front of it. 

3. Similarly, memory l must not have stored the 
cells immediately after cell c in the PIFO queue for output
j. 

Hence our choice of memory l must meet four constraints,
and thus, a total memory bandwidth of 4NR is sufficient for
the PSM router to emulate a PIFO shared memory router. �

APPENDIX  B

C.  Proof of Theorem 5

Definition 5: Busy Vertex Write Set (BVWS) - When a cell is
written into an intermediate port x during a crossbar schedule,
port x is no longer available during that schedule. BVWS(t) is
the set of ports busy at t due to cells being written, and there-
fore cannot accept a new cell. Since, for a given input no more
than  other arrivals occur during that time slot, clearly

.

Defini tion 6: Busy Vertex Read Set (BVRS) - Simi lar ly,
BVRS(t) is the set of ports busy at  due to cel ls being read,
and therefore cannot accept a new cell. Since, for a given out-
put no more than  other departures occur during that
time slot, clearly 

Theorem 5: (Sufficiency) A Crossbar-based DSM router
can emulate an FCFS shared memory router with a total mem-
ory bandwidth of 4NR and a crossbar speed of 4R.

Proof: (Using Constraint Sets). Consider cell c that arrives to
the Crossbar-based Distributed Shared Memory switch at time
t destined for output j, with departure time, . Apply-
ing the constraint set method, our choice of intermediate port
x, to write c into must meet these constraints:

1. Port x must be free to be written to during at least one of

the  crossbar schedules reserved for writing cells at

time t. Hence, .

2. Port x must not conflict with the reads occurring at time t.
However since, the write and read schedules of the cross-
bar are distinct, this will never happen.

3. Port x must be free to be read from during at least one of
the  crossbar schedules reserved for reading cells at time

. Hence, .

Hence our choice of  must meet the following constraints:

(3)

This is true if . Hence, we need a crossbar speed

of . Because a memory requires

just two reads and two writes per time slot, the total memory
bandwidth is 4NR. �
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D.  Proof for Theorem 6

Theorem 6: (Sufficiency) A Crossbar-based DSM router
can emulate a PIFO shared memory router within a relative
delay of  time slots, with a total memory bandwidth of
6NR and a crossbar speed of 6R.

Proof: (Using Constraint Sets). Similar to Theorem 5, we con-
sider a cell c arriving at time t, destined for output j and with
departure time,  (which is based on the conflict-free
permutation departure order ). Applying the Constraint Set
method, our choice of x to write c into meets these constraints:

1. Port x must be free to be written to during at least one of
the  crossbar schedules reserved for writing cells at
time t.

2. Port x must not conflict with the reads occurring at time t.
However since, the write and read schedules of the cross-
bar are distinct, this will never happen.

3. Port x must not have stored the  cells immedi-
ately in front of cell c in the PIFO queue for output j,
because it is possible for cell c to be read out in the same
time slot as some or all of the  cells in front of
it.

4. Port x must not have stored the  cells immedi-
ately after cell c in the PIFO queue for output j. 

Hence our choice of port x must meet one write constraint
and two read constraints, which can be satisfied if .
Hence, we need a crossbar speed of

. A memory can have three reads
and three writes per time-slot, corresponding to a total mem-
ory bandwidth of 6NR.

Note that  will also satisfy Theorem 6. �

APPENDIX  C

Lemma 3: A request matrix can be ordered in no more
than  alternating row and column permutations.

Pr oof: We shall perform the ordering in a iterative way. The
first iteration consists of one ordering permutation of rows or
columns, and the subsequent iterations consist of two permuta-
tions, one of rows and one of columns. We will prove the theo-
rem by induction.

1. After the first permutation, either by row or by column, the
entry at  is non-zero, and this entry will not be
moved again. We can define sub-matrices of S as follows:

(4)

2. If a sub-matrix of S is ordered and will not change in future
permutations, we call it optimal. Suppose  is optimal
after the nth iteration. We want to prove that after another
iteration, the sub-matrix  is optimal. Without loss of

generality, suppose a row permutation was last performed,
then in this iteration, we’ ll do a column permutation fol-
lowed by a row permutation. There are four cases:

a. The entries of  and  are all zeros. Then
 after just one permutation, so the sub-matrix

 is optimal.

b. The entries of  are all zeros but those of  are not.
After the column permutation, suppose  is
the first positive entry in column , then the first m
rows of S are ordered and will remain so. Thus, column

 will remain the biggest column in , and  is
optimal.

c. The entries of  are all zeros but those of  are not.
This case is similar to case (b).

d. The sub-matrices  and  both have positive entries.
The column permutation will not change row  such
that it becomes smaller than the rows below it. Similarly,
the row permutation following will not change column

 such that it becomes smaller than the columns on its
right. So  is optimal.

After at most N iterations, or a total of  permutations,
the request matrix is ordered. �

Theorem 7: If a request matrix S is ordered, then any max-
imal matching algorithm that gives strict priority to entries
with lower indices, such as the WFA [11] , can find a conflict-
free schedule.

Proof: By contradiction. Suppose the scheduling algorithm
cannot f ind a confl ict free time slot for request . This
means

. (5)

Now consider the sub-matrix , consisting of the first m
rows and the first n columns of S. Let’s look at the set of the
first non-zero entries of each row, , and the set of the first
non-zero entries of each column, . Without loss of general-
ity, suppose  is the only entry belonging to both sets. (If
this is not true, and , where  or , also belongs to
both  and , then we can remove the first  rows and
the first columns of  to obtain a new matrix. Repeat
until  and  only have one common entry.) Then

. At most two of the entries in the mth

row and those in the nth column are in , so the sum of
all the entries satisfies 

(6)

which conflicts with property 1. �
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