Algorithmic Memory – An Order of Magnitude Increase in Next Generation Embedded Memory Performance

Part I: Memory Performance
Part II: Other Benefits and Applications

Sundar Iyer – Co-founder and CEO, Memoir Systems
Problem: Processor-External Memory Performance Gap

Solution: System On Chip (SoCs)

Source: Hennessy Patterson, “Computer Architecture,” 5th Edition
New Problem: Processor-Embedded Memory Performance Gap

- Embedded memory clock speeds are hitting a wall (< 15% growth every generation)

New Performance Gap: Processor/Aggregated Processors Access Embedded Memory At A Rate Faster Than It Can Handle. The Gap is Getting Worse...
Why is Embedded Memory Slow?

How can we Increase MOPS (Memory Operations Per Second) Without Increasing Memory Clock Speed?
Solution: Algorithmic Memory® = Memory Macros + Algorithms

Physical Memory (12K x 144)

1P @ 500 MHz

1P
1P
1P
1P
1P
1P
1P
1P

1P @ 500 MHz
Allows 500 Million MOPS
(1 Memory Operations Per Second)

Algorithmic Memory (12K x 144)

1P @ 500 MHz

1P
1P
1P
1P
1P
1P
1P
1P

4P @ 500 MHz
Allows 2000 Million MOPS
More Ports, Same Clock

NOTE: First Focus on Increasing True Random Access MOPS
Solution: We Start with Physical Memory …

Any Embedded Physical Memory

Example: 12 K Deep x 144 Wide

Example: 500 MHz Clock

Single Port Memory 1RW

Gives 500 Million Memory Operations Per Second

Memory Operations Per Second Limited By Clock Speed
Solution: ... Transform To Algorithmic Memory

Algorithmic Memory = Generated from Existing Physical Memory

RTL Based: No Circuit or Layout changes

Each Port can access the entire Memory Address

Simultaneous Accesses to the same Address, Row, Column, or Bank (no exceptions)

Exhaustively Formally Verified & Transparent to end-user

Complements Physical Memory & Increases Performance up to 10X more MOPS

Using Existing Physical Memory to Build any Multiport Functionality
Algorithmic Memory Technology: Explanation for Writes

Algorithmic Memory = Generated from Existing Physical Memory

(1) Extra Cache Bits: Sufficient Bits to Hold Burst of Writes in Cache

(2) Cache Eviction: Correct Algorithm to Decide When to Evict Data from Cache

(3) Correct Load Balancing Algorithm: Move Data to Different Address During Write Congestion

(4) Correct Garbage Collection Algorithm: Move Data Back to Original Location

One can Mathematically Prove that With the Correct Steps in 1, 2, 3 and 4, all Patterns of Writes Are Covered
Algorithmic Memory Technology: Explanation for Reads

Algorithmic Memory = Generated from Existing Physical Memory

(1) Extra Bits: Sufficient Bits to Encode Data on Writes

(2) Erasure Codes: Codes are Based on Erasure Coding; Treat Bank Conflicts as Erasures!

(3) Decoding Algorithms: Decode Time Affects Latency; Use Non-Optimal Codes for Faster Decode

(4) Multi Erasure Codes For More Reads: Supports Multiple Read Bank Conflicts

When 1, 2, 3 and 4, are Correctly Implemented All Read Conflicts Can be Resolved
Who Let the Dogs Out? ...

Memory Area

Qualification
Test Chip
Power
Time
Cost
Resources

Performance
Frequency
Risk
Extend Performance, Power, Area of Physical Memory

Built from Existing Embedded Memory
- Reduces cost, time to market,
- Reduces risk to build physical compilers

Better Performance, Power and Area
- Lowers area, power (medium, large size mem.)
- Increases clock frequency up to 30%

Integrates Seamlessly into ASIC Flows
- Exhaustively formally verified
- Supports standard SRAM interface
- Adds No additional clock cycle latency

© Memoir Systems®
Reduces SOC Memory Area

Normalized: Physical 1-Port Memory 1RW = 1 Mb/mm²
- Physical 2-port Memory, 1R1W = 0.6 Mb/mm²
Reduces SOC Memory Power

1R1W Physical Memory

1R1W Algorithmic Memory

2R2W Physical Memory

2R2W Algorithmic Memory

Max. Power in mW vs Memory Instance Size in Mb
Algorithmic Memory Usage for Datacom Applications

Algorithmic Memory offers 2400 Million MOPS at 600 MHz Clock Speeds for Next Generation Aggregated 10G/100G Ethernet
Common Applications For Next Generation SoCs

- **Data Comm: Networking/SDN/Storage**
 - Ingress buffers, egress buffers
 - Multicast descriptor lists
 - L2 MAC lookups, HPC lookups
 - Free lists for multicast buffers
 - Data and tag arrays for L2/L3 caches
 - Netflow, counters, state tables, linked lists
 - Route lookup tables
 - ACL tables

- **Mobile Infrastructure/HPC**
 - Ingress buffers, egress buffers
 - Multicast descriptor lists
 - L2 MAC lookups, HPC lookups
 - Free lists for multicast buffers
 - Data and tag arrays for L2/L3 caches
 - Netflow, counters, state tables, linked lists
 - Route lookup tables
 - ACL tables

- **HD Video, Automotive**
 - Frame Buffers, FIFOs

- **High Performance Processors**
 - Multiprocessor L2/L3 tags/Caches
 - Mobile, Application Processor SoCs
 - DSP load/store units
 - Graphics SIMD Register files
 - Video pixel structures

Available now
Optimized for IBM Process

2X, 4X and 10X Multiport Families
Tier-1 OEM Vendor Evaluation – PPA Benefits

Large ASIC with Physical Memory

- Area 576 mm²
 - 800 Mb of total memory
 - 165 Memory Instances
 - SRAM, RF, eDRAM
- Versatile memories required
 - 4R/1W, 2R1W, 1R2W memories

ASIC with Algorithmic Memory

- Area 441 mm²
 - Area Savings of 135 mm²
 - Decreased die size by 23%
 - 136 Memory Instances Accelerated
- Power Savings > 12W
- 4X MOPS for select memories
Rapid Memory Analysis and Generation

Push Button Generation

1port SRAM/Register File

Standard Cell

Library and Building Blocks

Generate Memory

Algorithmic Memory

Real-time Feedback

2X, 4X 10X

Family

Ports

Capacity

Frequency

Latency

Optimization

Read # Write

Width # Depth

MHz

Reduced Standard

Power Area

2X, 4X 10X

Ports

Capacity

Frequency

Latency

Optimization

Read # Write

Width # Depth

MHz

Reduced Standard

Power Area

© Memoir Systems®
Algorithmic MultiPort (AMP) Memories on IBM

- Login to IBM Customer Connect
 - https://www-03.ibm.com/services/continuity/resilience.nsf/pages/connect

- Accessing AMP
 - Navigate to CU-32HP
 - Libraries and Toolkits
 - AMP – Algorithmic Multiport
AMP: Offering On IBM 32nm, 14nm Process

IBM Physical Compilers
- Single Port SRAM
- Two Port SRAM
- Dual Port SRAM
- Four Port RF
- 1 Port eDRAM

Both SRAM and eDRAM Multiport Memories are Available on IBM Process

AMP eDRAM Multiports
- 2RW
- 1R1W
- 1R2W
- 2R1W
- 2R2W
- 3R1W
- 4R1W
- 1RW1W
- 2Ror1W
- 3Ror1W
- 4Ror1W

AMP SRAM Multiports
- 2RW
- 1R1W
- 1R2W
- 1R3W
- 1R4W
- 2R1W
- 2R2W
- 2R3W
- 2R4W
- 3R1W
- 4R1W
- 4R2W
- 4R4W
- 1R1RW
- 1RW1W
- 2Ror1W
- 3Ror1W
- 4Ror1W
Conclusion

1. Summary of Benefits
 • Increases Memory Ports and Clock Performance
 • Lowers Area and Power
 • Easy Interface, Integration and Implementation
 • Creates Versatile Memory Portfolio
 • Reduces Cost, Risk and Time to Market

2. Algorithmic Pattern-Aware Memory
 • Not all Applications Require Random Access MOPS
 • Optimize Memory for Specific Access Patterns
 • Sequential, Read-modify-write, Counters, Allocation, Strides ...

Algorithmic Memories are not a panacea, but present a new solution to alleviate the memory performance gap
Questions & Answers