
Characterization of Networks Supporting

Multi-dimensional Linear Interval Routing Schemes∗

Yashar Ganjali†

yganjali@stanford.edu

MohammadTaghi Hajiaghayi‡§

hajiagha@mit.edu

February 2001

Abstract

An Interval Routing Scheme (IRS) is a well-known, space efficient routing strategy
for routing messages in a distributed network. In this scheme, each node of the network
is assigned an integer label and each link at each node is labeled with an interval. The
interval assigned to a link e at a node v indicates the set of destination addresses of
the messages which should be forwarded through e at v. A Multi-dimensional Interval
Routing Scheme (MIRS) is a generalization of IRS in which each node is assigned
a multi-dimensional label (which is a list of d integers for the d-dimensional case).
The labels assigned to the links of the network are also multi-dimensional (a list of
d 1-dimensional intervals). The class of networks supporting linear IRS (in which
the intervals are not cyclic) is already known for the 1-dimensional case [FG94]. In
this paper, we generalize this result and completely characterize the class of networks
supporting linear MIRS (or MLIRS) for a given number of dimensions d. We show
that by increasing d, the class of networks supporting MLIRS is strictly expanded. We
also give a characterization of the class of networks supporting strict MLIRS (which is
an MLIRS in which the intervals assigned to the links incident to a node v, does not
contain the label of v).

∗The preliminary version of this paper has appeared in the proceeding of SIROCCO’01, Barcelona, Spain,
July 2001.

†Department of Electrical Engineering, Stanford University
‡Department of Mathematics, MIT
§This research was completed while both authors were graduate students in the Department of Computer

Science at the University of Waterloo



Key words: Computer networks, interval routing schemes, graph theory, multi-
dimensional, characterization.

1 Introduction

One of the most fundamental tasks in any network of computers is routing messages between

pairs of nodes. The classical method used for routing messages in a network is to store a

routing table at each node of the network. A routing table has one entry for each destination

address which indicates which of the adjacent links should be used to forward the message

towards that destination.

Each routing table requires O(n) space in an n-node network, which is not efficient (and

even feasible) for large networks of computers. The methods to reduce the amount of space

needed at each node have been intensively studied and there are many techniques to compress

the size of routing tables [FJ88, FJ89, ABNLP90, TvL95]. The general idea is to group the

destination addresses that correspond to the same outgoing link (at a node), and to encode

the group so that it is easy to verify if a given destination address is in the group or not. A

well-known solution is to use intervals as groups of destination addresses.

In an Interval Routing Scheme (IRS), which was originally introduced by Santoro and

Khatib [SK85], each node of the network is assigned an integer label taken from {1, 2, ..., n}
and each link of the network at each node is assigned an interval which can be cyclic. Routing

messages is completed in a distributed way. At each intermediate node v, if the label of the

node equals the destination address, dest, the routing process ends. Otherwise, the message

is forwarded through a link labeled by an interval I, such that dest ∈ I. Clearly, this method

requires O(l) space at each node (l is the number of links at the node), which is an efficient

memory allocation.

A Linear Interval Routing Scheme (LIRS) is an IRS in which the intervals are not cyclic.

The concept of LIRS was first introduced by Bakker et al. [BvLT91]. They mentioned

practical reasons for which we allow only the use of linear intervals and not cyclic ones.

This notions is especially useful to derive results on networks built by cartexian products (as

hypercubes and torus) [FG98]. Also, a Strict Interval Routing Scheme (SIRS) is an IRS in

which the interval assigned to a link e at a node v does not contain the label of v. A Strict

and Linear Interval Routing Scheme (SLIRS) is an IRS which is both linear and strict. If

we assign k intervals to each link of the network we will have a k-IRS (respectively, k-LIRS,

k-SIRS, and k-SLIRS). Gavoille has done a survey of results concerning this method [Gav00].

It has been proved that any network supports an SIRS and therefore an IRS [SK85,

vLT87]. The class of networks which support LIRS and SLIRS have also been characterized

by Fraigniaud and Gavoille which excludes a large class of networks [FG94]. They define a

2



class of graphs called lithium graphs and show that a network supports an LIRS if and only

if its underlying graph is not a lithium graph. They also show that a network supports an

SLIRS if and only if its underlying graph is not a weak lithium graph.

A very interesting extension of IRS is a Multi-dimensional Interval Routing Scheme

(MIRS) in which the labels assigned to the nodes are elements from INd (in

the d-dimensional case) and each link is labeled with a d-tuple ([a1, b1], [a2, b2], ...,

[ad, bd]) of intervals, ai, bi ∈ IN, for 1 6 i 6 d [FGNT98]. The routing process in an MIRS is

quite similar to the routing process in 1-dimensional IRS.

A network is said to be in 〈k, d〉-MIRS or support 〈k, d〉-MIRS if there is a d-dimensional

MIRS with k intervals in each link such that for any pair of nodes s and t, the message

originating from s eventually reaches t. The classes 〈k, d〉-MLIRS and 〈k, d〉-MSLIRS are

defined similarly. The only known classes of networks which support different variations

of MIRS are specific interconnection networks such as rings, grids, tori, hypercubes and

chordal rings. In this paper, we will investigate the problem of characterizing classes of

networks supporting MIRS. We give a complete characterization of the class of networks

supporting 〈1, d〉-MLIRS and 〈1, d〉-MSLIRS. We show that the class of networks supporting

〈1, d〉-MLIRS (〈1, d〉-MSLIRS) is a strict subset of the class of networks supporting 〈1, d+1〉-
MLIRS (〈1, d+1〉-MSLIRS) and therefore, increasing the number of dimensions in an MLIRS

(MSLIRS) increases the power of the routing scheme.

The rest of this paper is organized as follows: first, we will introduce some definitions and

preliminaries in Section 2. In Section 3 we will characterize the class of graphs supporting

〈1, d〉-MLIRS. Then, in Section 4, based on the arguments of the previous section, we will

give a characterization for graphs supporting 〈1, d〉-MSLIRS. Finally, in Section 5 we will

conclude and give a list of open problems.

2 Preliminaries

Throughout this paper, a network is modeled by a graph G = (V, E). The set V of vertices

of the graph represents nodes in the network and the set E of edges represents the links

between the nodes in the network. We assume that the graph is simple and does not have

any self-loops. For any edge (u, v) ∈ E we will use both (u, v) and (v, u) in order to assign

two unidirectional labels to the edge, but the edge is assumed to be undirected. We refer

the reader to standard texts for basic graph theoretic definitions [BM76, Wes96].

A graph G is said to be connected if for any pair of vertices, s and t, there is a path

connecting s and t. In this paper, we always assume that the network is connected. If

removing an edge e disconnects a graph G, e is called a bridge. If a graph does not have

a bridge, it is said to be edge-biconnected. Edge-biconnected components of a graph G are

3



maximal subgraphs of G which are edge-biconnected.

Observation 1. If G1 and G2 are two edge-biconnected components in a graph G, then any

path P connecting G1 and G2 goes through a unique bridge connected to G1.

In the following section, we will give a characterization for the class of networks supporting

a 〈1, d〉-MLIRS.

3 Characterization of networks supporting 〈1, d〉-
MLIRS

In this section we first give some examples of graphs which do not support 〈1, d〉-MLIRS.

Using the idea behind these examples, we introduce a class of graphs which do not support

〈1, d〉-MLIRS. Finally, we show that for any graph that is not in this class, one can always

construct a 〈1, d〉-MLIRS.

Bakker et al. [BvLT91] have proved that the graph shown in Figure 1 (a) (known as the

Y graph) does not have an LIRS (which is a 〈1, 1〉-MLIRS). Here, we prove a similar result

in the d-dimensional case. First, let us start by generalizing the definition of a Y graph.

(a) (b) (c)

first wing

u2

u3

u1

u4

u5
v1

v2

v4

v3
zv5

Figure 1: (a) The Y graph (b) The Y5 graph (c) A 5-windmill graph.

Definition 1. The Yk graph is a graph having 2k + 1 vertices u1, u2, ..., uk, v1, v2, ...,

vk and z. There is an edge connecting ui to vi, for every i, 1 6 i 6 k, and another edge

connecting each vi to z, 1 6 i 6 k (Figure 1 (b)). We call the subgraph consisting of ui and

vi the ith wing of the graph.

4



The Y graph of Figure 1 (a) is a Y3 graph by our new definition. To prove that the Y3

graph does not have an LIRS let us assume it has an LIRS and the vertices of the graph are

assigned integer labels taken from {1, 2, ..., 7}. Since we have three wings, there is a wing,

say the ith wing, which does not contain 1 or 7 (the minimum or the maximum label). Now,

the interval assigned to the edge (vi, z) at vi must contain both 1 and 7. Therefore, this

interval contains the label of ui which is not possible.

We can prove a similar result for d-dimensional LIRS and for the Y2d+1 graph. In fact,

we can immediately observe that if each wing of the Y2d+1 graph had more than just two

vertices, as long as those vertices are not directly connected to the vertex z or to the vertices

in other wings, the graph cannot support a d-dimensional MLIRS. In order to prove this

more general statement, we define a k-windmill graph as follows.

Definition 2. A k-windmill graph is a connected graph with k + 1 connected components

(not necessarily maximal) A1, A2, ..., Ak (arms of the k-windmill graph) and R (center of the

k-windmill graph) such that:

(i) each component Ai, 1 6 i 6 k, has at least two vertices;

(ii) there is no edge connecting Ai to Aj for 1 6 i, j 6 k and i 6= j; and

(iii) each component Ai, 1 6 i 6 k, is connected with R by exactly one bridge.

Figure 1 (c) illustrates a 5-windmill graph. Obviously, by this definition, a Yk graph is also

a k-windmill graph. Also, as Figure 1 (c) indicates, a k-windmill graph is a i-windmill graph

for any i, 1 6 i 6 k − 1. This can easily be shown by expanding R to include Ai+1, ..., Ak.

Lemma 1. Any (2d + 1)-windmill graph 6∈ 〈1, d〉-MLIRS.

Before proving this lemma, let us give a new definition, which will be used in the proof.

We consider a set of points P in d-dimensional space. For any dimension i, 1 6 i 6 d, if the

ith coordinate of a point b in P is less than or equal to the ith coordinate of every other

point in P , b is called a minimum point for the ith dimension. A maximum point is defined

similarly. A boundary set B of P is a minimal set of points in P containing a minimum and

a maximum point for each dimension i, 1 6 i 6 d, where one point can be both the minimum

and the maximum point for the same or different dimensions.

Figure 2 illustrates an example of a boundary set in 2-dimensional space. Here, P =

{1, . . . , 7} and {1, 5, 7} is a boundary set of P . The set {2, 5, 7} is also a boundary set of P .

We note that point 7 is the maximum point for one dimension and the minimum point for

another dimension.

5



1

2

3

4

5

6

7

Figure 2: An example of a boundary set in 2-dimensional space.

For any set of points in d-dimensional space, the number of points in any boundary set

is at most 2d. It is easy to show that if an interval contains the points in the boundary set

B of a set of points P , it contains all points in P . Now we can easily prove Lemma 1. In

this proof, we consider the d-dimensional labels of vertices as points in d-dimensional space.

Proof. (Lemma 1) Let us assume, by way of contradiction, that there is a 〈1, d〉-MLIRS

for a given (2d + 1)-windmill graph (d > 1) and consider the boundary set B of the vertices

of the graph. We have at most 2d vertices in the boundary set B. Since a (2d + 1)-windmill

graph has 2d + 1 arms, there is an arm, say the jth arm, that does not contain any vertex

in the boundary set B. Every d-dimensional interval containing all of the vertices in B

contains all vertices of (2d + 1)-windmill graph as well. Thus, the interval assigned to the

bridge connecting the jth arm to the center of the (2d + 1)-windmill graph, say (u, v) (u

is in the jth arm and v is a vertex in the center of the graph) contains all vertices in the

(2d + 1)-windmill graph. The jth wing has at least another vertex other than u, say u′.
Hence, the interval assigned to the edge (u, v) includes u′. Obviously, there is no path going

through (u, v) to reach u′, which is a contradiction. �

Lemma 1 introduces a class of graphs which do not support 〈1, d〉-MLIRS. In other

words, it states a necessary condition for a graph to support a 〈1, d〉-MLIRS. In the rest of

this section we will show that this is also a sufficient condition.

Fraigniaud and Gavoille have proved that a graph supports LIRS if and only if it is not

a lithium graph [FG94] (which is exactly the 3-windmill graph). We will use this result as

the basis for an inductive construction of a 〈1, d〉-MLIRS for a given graph G. We start with

some new definitions.

Definition 3. In a graph G, a chain of edge-biconnected components, or a chain for short, is

a set of edge-biconnected components of G with a special ordering of these edge-biconnected

components, say G1, G2, ..., Gk, such that:

(i) for each i, 1 6 i 6 k − 1, there is a bridge connecting Gi to Gi+1;

6



G2
G1 (head)

G4
G3

Figure 3: The dashed curves indicate edge-biconnected components in this figure. The edge-

biconnected components G1 and G2 form a chain. The edge-biconnected components G1, G2

and G3 (and not G4) form a perfect chain.

(ii) G1 is connected to exactly one bridge in G;

(iii) each edge-biconnected component Gi, 2 6 i 6 k−1 is connected to exactly two bridges

in G; and

(iv) The edge-biconnected component Gk is connected to either one or two bridges.

We call G1 the head and Gk the tail of the chain. Trivially if k = 1 then G1 is both

the head and the tail of the chain. A chain is said to be perfect if the tail of the chain is

connected to an edge-biconnected component which is connected to more than two bridges.

3.1 Properties of chains and k-windmill graphs

In this section we review some of the properties of chains and k-windmill graphs. The first

observation follows directly from the definition of a chain.

Observation 2. A perfect chain in a graph G is a proper induced subgraph of G, and the

tail of a perfect chain (which is an edge-biconnected component) is connected to the rest of

the graph by a bridge.

The edge-biconnected components G1, G2 and G3 in the graph depicted in Figure 3 and

the bridges connecting them form a chain. G1 and G3 are the head and the tail of this

chain, respectively. This is also a perfect chain since G3 (tail) is connected to an edge-

biconnected component (G4) which is connected to more than two bridges. As mentioned in

Observation 2, G3 (which is the tail of the perfect chain) is connected to the rest of the graph

by a bridge. Since, G3 is connected to exactly two bridges, the edge-biconnected components

G1 and G2 does not form a perfect chain.

7



Gr

Figure 4: Edge-biconnected components in a 3-windmill graph.

Lemma 2. If a graph G is a k-windmill graph for k > 3 then it is not a chain.

Proof. We consider each edge-biconnected component of G as a super-node. Clearly, the

resulting graph is a tree (otherwise, we have a cycle which contains some bridges, a contra-

diction). Since, G is a k-windmill graph (k > 3), there is a node v in this tree such that the

degree of v is at least 3 (the super-node Gr in Figure 4). In any chain, each edge-biconnected

component is connected to at most 2 other edge-biconnected components. Therefore, G is

not a chain. �

Lemma 3. Any non-trivial (having at least one vertex) graph G which is not a chain

contains a perfect chain as a proper induced subgraph.

Proof. Similar to the proof of Lemma 2, if we consider each edge-biconnected component

of G as a super-node we will have a tree. Any tree has at least one leaf. The chain starting

with this leaf and going to the nearest super-node with degree at least three is a perfect

chain (since G is not a chain such a super-node always exists). �

For example, in the graph depicted in Figure 3 if we consider the chain starting from the

super-node G1 and going to G3 (which is connected to G4 which is of degree four) we have

a perfect chain.

8



In constructing a 〈1, d〉-MLIRS, we will use this lemma in the induction step to reduce

the size of the graph. This reduction has a very nice property that is the heart of the main

proof, which is stated in the following lemma.

Lemma 4. If a graph G is not a chain and is not a k-windmill graph (k > 3), we can remove

any perfect chain from G and the resulting graph is not a (k − 1)-windmill graph.

C

R

B

D

P

Ai

A2A1

Ak−1

e

Figure 5: C and D will become arms in the k-windmill graph.

Proof. Since G is not a chain, by Lemma 3, there is a perfect chain C which is a proper

induced subgraph of G. We let G′ denote the graph G − C. We assume, to the contrary,

that G′ is a (k − 1)-windmill graph. By the definition of a (k − 1)-windmill graph, G′ has k

disjoint sets of vertices A1, A2, ..., Ak−1 and R. Since C is a perfect chain, by Observation 2

its tail is connected to G′ by a bridge. C cannot be connected to R, otherwise G must be

a k-windmill graph. Let us assume that C is connected to an edge-biconnected component,

B, which is in the arm Ai for some i, 1 6 i 6 k − 1 (Figure 5).

By the definition of a perfect chain, the edge-biconnected component B is connected to

at least three bridges, one connecting B to C and at least two other bridges connecting B to

some other edge-biconnected components in G′. By Observation 1 all the paths connecting B

and R go through one of the bridges connected to B, say e. We let D be the edge-biconnected

component which is connected to B and is not connected to e.

Now, we expand R to contain B and all the edge-biconnected components in the arm Ai

except D. Since G is a (k − 1)-windmill graph it has k − 2 arms other than Ai. We can

also consider C and D as two new arms. Hence, G has k arms and is a k-windmill graph, a

contradiction. �

9



3.2 Characterization

In this section we will prove the main result of this paper. First, we need to show how to

convert a d-dimensional IRS into a (d + 1)-dimensional IRS.

If a graph G supports a 〈1, d〉-MLIRS (〈1, d〉-MSLIRS), we can convert the d-dimensional

to a (d+1)-dimensional one, by adding a new coordinate to the labels of vertices. The label

of this coordinate is set to zero for all vertices. We also set the newly added coordinate

of each interval to be [0..0]. It is a trivial task to verify that this IRS routes the messages

exactly like the d-dimensional IRS. In other words, we can expand a d-dimensional IRS to a

(d + 1)-dimensional IRS.

Lemma 5. If a graph G supports a 〈1, d〉-MLIRS (〈1, d〉-MSLIRS) it also supports a 〈1, d+

1〉-MLIRS (〈1, d + 1〉-MSLIRS).

Now, we have all the tools we need to prove the main theorem of this section.

Theorem 1. A graph G has a 〈1, d〉-MLIRS if and only if it is not a (2d + 1)-windmill

graph.

Proof. First, we show that if a graph is not in the class of (2d + 1)-windmill graphs, then

it has a 〈1, d〉-MLIRS. We use induction on d, the number of dimensions. Fraigniaud and

Gavoille [FG94] have proved that if a graph G is not a lithium graph, which is exactly a

3-windmill graph, then there is a 1-LIRS for G (a 〈1, 1〉-MLIRS). This is the basis of the

induction.

Let us suppose that for any i 6 d − 1, if a graph is not a (2i + 1)-windmill graph, it has

a 〈1, i〉-MLIRS. Now, we want to show that if a graph G is not a (2d + 1)-windmill graph,

d > 1, then it has a 〈1, d〉-MLIRS. We first show how to label the vertices of G. Then, we

describe how we can update intervals in each step of the induction. Finally, we prove the

correctness of such vertex and link labeling.

Labeling vertices:

Although G is not a (2d + 1)-windmill graph it can be a (2d − 1)-windmill graph. If G is

not a (2d − 1)-windmill graph, by the induction hypothesis it has a 〈1, d − 1〉-MLIRS and

by Lemma 5, G also has a 〈1, d〉-MLIRS, completing the proof. Hence, we can assume that

G is a (2d − 1)-windmill graph and by recalling Lemma 2, we can assume that G is not a

chain. Therefore, by Lemma 3, G has a perfect chain, say C1, as a proper induced subgraph.

Since G is not a (2d + 1)-windmill graph and d > 1, by applying Lemma 4 we can remove

C1 and the resulting graph will not be a 2d-windmill graph. Since 2d > 3, we can repeat

these steps and remove another perfect chain, C2, so that the resulting graph, G′, is not a

(2d − 1)-windmill graph.

10



By the induction hypothesis, G′ has a 〈1, d − 1〉-MLIRS. We just need to expand this

labeling to a 〈1, d〉-MLIRS for G.

G

G′

C1

u1

v1 v2

u2

C2

〈1, 1〉-MLIRS

〈1, 1〉-MLIRS
〈1, d − 1〉-MLIRS

The d-th axis

0

Figure 6: Expanding the labels of vertices in G′ to labels for vertices in G.

C1 and C2 are chains and therefore, by Lemma 2, they are not 3-windmill graphs. There-

fore, by the induction hypothesis, there is a 〈1, 1〉-MLIRS for each of them. In fact, in

[FG94], it has been proved that if a given graph is not a 3-windmill (lithium) graph, we can

specify a vertex and find a labeling for the vertices such that the label of the specified vertex

is 1. We find such a 〈1, 1〉-MLIRS for C1 (C2) such that the label for the vertex in C1 (C2)

joining C1 (C2) to the rest of the graph G, say u1 (u2), is 1 (Figure 6).

To construct the new labeling for G, each vertex in G′ is assigned a d-dimensional label

in which the first d − 1 coordinates are the same as the labels in the linear 〈1, d − 1〉-MIRS

corresponding to G′ and the dth coordinate is 0. Figure 6 illustrates an example in which

d = 3. The third coordinates of the labels assigned to the vertices of G′ are all 0, so G′ lies in

the plane passing through the first and the second axes. For now, we assume that the labels

assigned to the vertices can have any integer value (including 0 and negative integers) as

their dth coordinates. We can shift all the labels such that the dth coordinates of all labels

becomes positive later.

Let (v1, u1) and (v2, u2) respectively denote the bridges connecting G′ to C1 and C2 and

let v1 and v2 be vertices of G′. We will set the first d − 1 coordinates of each vertex in C1

to be equal to the first d − 1 coordinates of v1. The dth coordinates of vertex labels in C1

are the labels assigned to vertices in the previously mentioned 〈1, 1〉-MLIRS. In Figure 6 the

vertices in C1 all lie on the line passing through v1 and parallel to the dth axis.

For the vertices in C2, we will similarly set the first d−1 coordinates of each vertex equal

to the first d − 1 coordinates of v. If the label of a vertex v in the previously mentioned

11



〈1, 1〉-MLIRS is l(v), we assign −l(v) as the dth coordinate of the new labeling (Figure 6).

Now as mentioned before, we can shift the dth coordinate of all the labels such that the dth

coordinate of the vertex with minimum value becomes 1. We let s denote the amount of this

shifting and M denote the maximum value in the dth coordinate of all new labels.

t

G

C1

C2

v2

M

The d-th axis

C2

v1 v2

C1

1..n

1..m

1..t

1

G′

s

I′

v1
I

I′
I

Figure 7: (a) Updating an interval in G′ (b) Updating an interval, which includes u1, in C1

(I is the old interval, I ′ is the new one in both (a) and (b))

Updating Intervals:

We update intervals as follows: the first d − 1 coordinates of each interval assigned to a

link in G′ is the same as the (d − 1)-dimensional interval associated with that edge in the

〈1, d− 1〉-MLIRS defined on G′. The dth coordinate of all intervals is set to be [1..M ]. Any

(d−1)-dimensional interval in G′ that does not contain v1 or v2 will still contain the same set

of vertices and any interval containing v1 (respectively v2) will also contain all the vertices

in C1 (C2). For example the two dimensional interval I, shown in Figure 7 (a), contains v1,

so the new three-dimensional interval I ′ contains all the vertices in C1. Since I does not

contain v2, I ′ does not contain any of the vertices in C2.

For the intervals associated with the links in C1 or C2, the first d− 1 coordinates are set

to [1..n]. To set the dth coordinate of each interval we will use the previously mentioned

〈1, 1〉-MLIRS. Let us assume that in the 〈1, 1〉-MLIRS defined on C1 the interval assigned

to a link e is Ie = [a..b]. If Ie does not contain u1, the dth coordinate of the newly assigned

d-dimensional interval will be [a + s..b + s] (we shift the dth coordinate by s units because

we have already shifted the vertices in this dimension). If Ie contains u1, i.e. Ie = [1..b]

for some b, the dth coordinate of the newly assigned interval will be Ie = [1..b + s]. This

means that any 1-dimensional interval defined in C1 will be transformed into a d-dimensional

12



interval containing the same set of vertices in C1 and if it contains u1, it will also contain all

the vertices in G′ and C2. The interval I depicted in Figure 7 (b) contains u1, so the new

interval I ′ contains the set of vertices in C1 that where in I and also all the vertices in C2

and G′. We will analogously assign intervals to the links in C2.

The only remaining labels to update are labels of the links (v1, u1), (u1, v1), (v2, u2) and

(u2, v2). The first d− 1 coordinates of intervals associated with (v1, u1), (u1, v1), (v2, u2) and

(u2, v2) are set to [1..n] and the dth coordinates will respectively be [s+1..n], [1..s], [1..s− 1]

and [s..n].

Correctness:

Now, let us consider a message originating from vertex ws and with destination wt. If both

ws and wt are in C1 (similarly C2 or G′) one can easily check that the newly defined 〈1, d〉-
MLIRS will route the messages on the same path as the 〈1, 1〉-MLIRS defined on C1 (C2

or the 〈1, d − 1〉-MLIRS defined on G′). This is because if we just considering the set of

vertices in C1 (C2 or G′) each interval assigned to a link contains the same set of vertices

as it contained before expanding the labels to d dimensions. If ws is in C1 and wt in G′,
the message must go through the link (u1, v1) because this is the only link connecting C1 to

G′. The intervals in C1 which contain wt are exactly the intervals containing u1. Therefore,

this message will be forwarded through the same links as the links through which a message

towards u1 would be forwarded. When the message reaches u1, the bridge (u1, v1) forwards

the message to v1, because the interval assigned to (u1, v1) contains all the vertices in G′ and

C2. The rest of the routing will be the same as the 〈1, d − 1〉-MLIRS defined on G′.

We can show that if there is a message in node x (x = u2, v1 or v2) which is supposed to

be forwarded the bridge connected to x, say ex (ex = (u2, v2), (v1, u1) or (v2, u2) respectively),

will be sent to the other end of ex. Verifying the cases in which ws is in C2 or G′ is similar.

Hence, any message originating at any vertex and going to an arbitrary destination will

eventually reach the destination, and the 〈1, d〉-MLIRS routes messages on G properly.

We now have shown that if a graph is not in the class of (2d + 1)-windmill graphs it has

a 〈1, d〉-MLIRS. Lemma 1 shows that no graph in this class can support a 〈1, d〉-MLIRS.

Combining these two results completes the proof of the theorem. �

Since for each d > 1, we have a (2d + 1)-windmill graph which is not a (2d + 3)-windmill

graph (for example the Y2d+1 graph), we can state the following corollary:

Corollary 1. The class of graphs supporting 〈1, d〉-MLIRS is a strict subset of the class of

graphs supporting 〈1, d + 1〉-MLIRS.

In other words, increasing the number of dimensions increases the power of the routing

scheme.

13



4 Characterization of networks supporting 〈1, d〉-
MSLIRS

In this section we will give a characterization of the class of graphs supporting 〈1, d〉-MSLIRS.

We will give some new definitions and will show that with slight changes in some steps in

proofs, we can use the same ideas used to characterize the class of graphs supporting 〈1, d〉-
MLIRS.

In proving the Lemma 1, we needed to have at least two vertices in each arm of a (2d+1)-

windmill graph. Otherwise, if the arm which did not have any vertex in the boundary set,

say Ai, had just one vertex, say x, the interval assigned to the edge connecting Ai to R could

contain x and this was not a contradiction. On the other hand, if the intervals assigned to

the links are supposed to be strict, we could prove a similar lemma, even if we had an arm

having just one vertex. This is the main difference between the proofs of this section and

the previous one. More formally, let us start with a new definition.

Figure 8: A weak 5-windmill graph.

Definition 4. A weak k-windmill graph is a connected graph G with k + 1 connected

components A1, A2, ..., Ak (arms) and R (center) such that:

(i) there is no edge in G connecting Ai to Aj for 1 6 i, j 6 k and i 6= j;

(ii) each component Ai, 1 6 i 6 k is connected with R by exactly one bridge (Figure 8).

As mentioned above, if the IRS is strict, then with even one vertex in each arm the

proof of Lemma 1 will still be valid, because a vertex which is not in the boundary set is

contained in an edge connected to it. Therefore, any weak (2d + 1)-windmill graph does not

have a 〈1, d〉-MSLIRS. We can also verify, with the same argument as the proof of Lemma 4,

14



that removing any perfect chain from a graph G which is not a weak k-windmill graph will

produce a graph which is not a weak (k − 1)-windmill graph.

The only remaining step is to show that the induction basis and step are also valid in

constructing a 〈1, d〉-MSLIRS for any graph that is not a weak (2d + 1)-windmill graph. We

already know that any graph which is not weak 3-windmill graph (a weak lithium graph as

defined in [FG94]) has a 〈1, 1〉-MSLIRS, so the induction basis is true. Since we have lemmas

similar to Lemmas 3 and 4 one can verify that a similar induction step still works here. This

give us the complete characterization of graph supporting 〈1, d〉-MSLIRS as follows:

Theorem 2. A graph G has a 〈1, d〉-MSLIRS if and only if it is not a weak (2d+1)-windmill

graph.

Corollary 2. The class of graphs supporting 〈1, d〉-MSLIRS is a strict subset of the class of

graphs supporting 〈1, d + 1〉-MSLIRS.

5 Conclusions and open problems

In this paper we completely characterized the class of networks supporting 〈1, d〉-MLIRS and

the class of networks supporting 〈1, d〉-MSLIRS. We showed that increasing the number of

dimensions makes the routing scheme more powerful. One natural extension to this problem

is to characterize the networks having a 〈1, d〉-MLIRS or 〈1, d〉-MSLIRS when the network

has weighted links with dynamic costs. If the routing paths are supposed to be shortest

paths, and we can relabel the edges after each change in the cost of links, there is a complete

characterization for 〈1, d〉-MSLIRS [Gan01a, Gan01b]. If the intervals are the same for any

costs of links, the characterization problem is open even except for the 1-dimensional case

[BvLT91]. There is a partial characterization for the class of networks supporting optimum

LIRS in 1-dimension [NS98]. Finally, one can consider the problem of finding bounds on the

length of routing paths for each of these classes.

6 Acknowledgment

We would like express our sincere gratitude to Professor Naomi Nishimura, for her thoughtful

comments, guidance and support.

References

[ABNLP90] Baruch Awerbuch, Amotz Bar-Noy, Nathan Linial, and David Peleg. Improved

routing strategies with succinct tables. J. Algorithms, 11(3):307–341, 1990.

15



[BM76] John A. Bondy and U. S. R. Murty. Graph theory with applications. American

Elsevier Publishing Co., Inc., New York, 1976.

[BvLT91] Erwin M. Bakker, Jan van Leeuwen, and Richard Tan. Linear interval rout-

ing. ALCOM: Algorithms Review, Newsletter of the ESPRIT II Basic Research

Actions Program Project no. 3075 (ALCOM), 2, 1991.

[FG94] Pierre Fraigniaud and Cyril Gavoille. A characterization of networks support-

ing linear interval routing. In 13th Annual ACM Symposium on Principles of

Distributed Computing (PODC), pages 216–224. ACM PRESS, August 1994.

[FG98] Pierre Fraigniaud and Cyril Gavoille. Interval routing schemes. Algorithmica,

21(2):155–182, 1998.

[FGNT98] Michele Flammini, Giorgio Gambosi, Umberto Nanni, and Richard B. Tan. Mul-

tidimensional interval routing schemes. Theoret. Comput. Sci., 205(1-2):115–

133, 1998.

[FJ88] Greg N. Frederickson and Ravi Janardan. Designing networks with compact

routing tables. Algorithmica, 3(1):171–190, 1988.

[FJ89] Greg N. Frederickson and Ravi Janardan. Efficient message routing in planar

networks. SIAM J. Comput., 18(4):843–857, 1989.

[Gan01a] Yashar Ganjali. Multi-dimensional interval routing schemes. Master’s thesis,

Department of Computer Science, University of Waterloo, 2001.

[Gan01b] Yashar Ganjali. Optimum multi-dimensional interval routing schemes on net-

works with dynamic cost links. Technical Report CS-2001-04, Department of

Computer Science, University of Waterloo, Waterloo, Canada, 2001.

[Gav00] Cyril Gavoille. A survey on interval routing. Theoret. Comput. Sci., 245(2):217–

253, 2000. Algorithms for future technologies (Saarbrücken, 1997).

[NS98] Lata Narayanan and Sunil Shende. Partial characterizations of networks sup-

porting shortest path interval labeling schemes. Networks, 32(2):103–113, 1998.

[SK85] Nicola Santoro and Ramez Khatib. Labelling and implicit routing in networks.

The Comput. J., 28(1):5–8, 1985.

[TvL95] Richard B. Tan and Jan van Leeuwen. Compact routing methods: A survey.

In Proceedings of Colloquium on Structural Information and Communication

Complexity (SICC’94), SCS, Carleton University, Ottawa, pages 99–109, 1995.

16



[vLT87] Jan van Leeuwen and Richard B. Tan. Interval routing. The Comput. J.,

30(4):298–307, 1987.

[Wes96] Douglas B. West. Introduction to graph theory. Prentice Hall Inc., Upper Saddle

River, NJ, 1996.

17


