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Abstract

A graph is said to be uniquely list colorable, if it admits a list assignment which induces a
unique list coloring. We study uniquely list colorable graphs with a restriction on the number of
colors used. In this way, we generalize a theorem which characterizes uniquely 2-list colorable
graphs. We introduce the uniquely list chromatic number of a graph and make a conjecture about
it which is a generalization of the well-known Brooks’ theorem. © 2002 Elsevier Science B.V.
All rights reserved.

1. Introduction

We consider finite, undirected simple graphs. For necessary definitions and notations
we refer the reader to standard texts such as [5].

Let G be a graph, f:V(G) — N be a given map, and ¢+ € N. An (f,1)-list
assignment L to G is a map, which assigns to each vertex v, a set L(v) of size f(v)
and ||J,L(v)| =t. By a list coloring for G from such L or an L-coloring for short,
we shall mean a proper coloring ¢ in which ¢(v) is chosen from L(v), for each vertex
v. When f(v) =k for all v, we simply say (k,¢)-list assignment for an (f,¢)-list
assignment. When the parameter ¢ is not of special interest, we say f-list (or k-list)
assignment simply. Specially, if L is a (z,¢)-list assignment to G, then any L-coloring
is called a ¢-coloring for G.

In this paper, we study the concept of uniquely list coloring which was introduced
by Dinitz and Martin [1] and independently by Mahdian and Mahmoodian [4]. In
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[1,4] uniquely k-list colorable graphs are introduced as graphs which admit a k-list
assignment which induces a unique list coloring. In the present work, we study uniquely
list colorings of graphs in a more general sense.

Definition 1. Suppose that G is a graph, f: V(G) — N is a map, and ¢ € N. The graph
G is called to be uniquely (f,¢)-list colorable if there exists an ( f,¢)-list assignment L
to G, such that G has a unique L-coloring. We call G to be uniquely f-list colorable
if it is uniquely (f,?)-list colorable for some ¢.

If G is a uniquely (f,t)-list (resp. f-list) colorable graph and f(v) =k for each
v € V(G), we simply say that G is a uniquely (k,¢)-list (resp. k-list) colorable graph.
In [4], all uniquely 2-list colorable graphs are characterized as follows.

Theorem A (Mahdian and Mahmoodian [4]). A graph G is not uniquely 2-list
colorable, if and only if each of its blocks is either a complete graph, a complete
bipartite graph, or a cycle.

For recent advances in uniquely list colorable graphs we direct the interested reader
to [3,2].

In developing computer programs for recognition of uniquely k-list colorability of
graphs, it is important to restrict the number of colors as much as possible. So if G is
a uniquely k-list colorable graph, the minimum number of colors which are sufficient
for a k-list assignment to G with a unique list coloring, will be an important parameter
for us. Uniquely list colorable graphs are related to defining sets of graph colorings
as discussed in [4], and in this application also the number of colors is an important
quantity.

In the next section, we show that for every uniquely 2-list colorable graph G
there exists a 2-list assignment L, such that G has a unique L-coloring and there
are max{3, 7(G)} colors used in L.

2. Uniquely (2,¢)-list colorable graphs

It is easy to see that for each uniquely k-list colorable graph G, and each k-list
assignment L to its vertices which induces a unique list coloring, at least k£ + 1 colors
must be used in L, and on the other hand, since G has an L-coloring, at least y(G)
colors must be used. So the number of colors used is at least max{k + 1, y(G)} colors.
Throughout this section, our goal is to prove the following theorem which implies the
equality in the case k£ = 2.

Theorem. A4 graph G is uniquely 2-list colorable if and only if it is uniquely (2,t)-list
colorable, where t = max{3, y(G)}.
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Fig. 1. A 3-list assignment to K333 which induces a unique list coloring.

To prove the theorem above we consider a counterexample G to the statement
with minimum number of vertices. In Theorems 4, 6, and 7, we will show that G
is 2-connected and triangle-free, and each of its cycles is induced (chordless).

As mentioned above, if G is a uniquely k-list colorable graph, and L a (k,¢)-list
assignment to G such that G has a unique L-coloring, then ¢>max{k + 1, (G)}.
Although the theorem above states that when k=2 there exists an L for which equality
holds, this is not the case in general.

To see this, consider a complete tripartite uniquely 3-list colorable graph G. We will
call each of the three color classes of G a part. In [3] it is shown that for each k>3
there exists a complete tripartite uniquely k-list colorable graph. For example, one can
check that the graph K333 has a unique list coloring from the lists shown in Fig. 1
(the color taken by each vertex is underlined).

Suppose that L is a (3,¢)-list assignment to G which induces a unique list coloring
¢, and the vertices of a part X of G take on the same color i in ¢. We introduce a
2-list assignment L’ to G\ X as follows. For every vertex v in G\ X, if i € L(v) then
L'(v)=L(v)\{i}, and otherwise L'(v)=L(v)\ {j}, where j € L(v) and j # ¢(v). Since
L induces a unique list coloring ¢ for G, G \ X has exactly one L’-coloring, namely
the restriction of ¢ to V(G)\ X. But G \ X is a complete bipartite graph and this
contradicts Theorem A. So on each part of G there must appear at least 2 colors and,
therefore, we have ¢>6 while max{k + 1, y(G)} = 4.

Similarly, one can see that if G is a complete tripartite uniquely k-list colorable
graph for some k>3, and L a (k,t)-list assignment to G which induces a unique list
coloring, then on each part there are at least £k — 1 colors appeared and so we have
t=3(k — 1) while max{k + 1, x(G)} =k + 1.

Towards our main theorem, we start with two basic lemmas.

Lemma 2. Suppose that G is a connected graph and f:V(G) — {1,2} such that
f(vg) =1 for some vertex vy of G. Then G is a uniquely (f,y(G))-list colorable
graph.

Proof. Consider a spanning tree 7 in G rooted at vy and consider a y(G)-coloring ¢
for G. Let L(v) be {c(v)} if f(v) =1, and {c(u),c(v)} if f(v) =2, where u is the
parent of v in 7. It is easy to see that ¢ is the only L-coloring of G. [J
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Lemma 3. Let G be the union of two graphs G, and G, which are joined in exactly
one vertex vyg. Then G is uniquely (2,t)-list colorable if and only if at least one of
G, and G, is uniquely (2,t)-list colorable.

Proof. If either G| or G, is a uniquely (2,¢)-list colorable graph, by using Lemma 2,
it is obvious that G is also uniquely (2,¢)-list colorable. On the other hand, suppose
that none of G; and G, is a uniquely (2,¢)-list colorable graph and L is a (2,¢)-list
assignment to G which induces a list coloring c. Since G; and G, are not uniquely
(2, t)-list colorable, each of these has another coloring, say ¢ and c;, respectively. If
c1(vg)=c(vy) or c3(vg)=c(vy) then an L-coloring for G different from c is obtained ob-
viously. Otherwise ¢;(vg)=cz(vg), soO we obtain a new L-coloring for G, by combining
C1 and . (|

The following theorem is immediately followed by Lemmas 2 and 3.

Theorem 4. Suppose that G is a graph and t=y(G). The graph G is uniquely
(2,t)-list colorable if and only if at least one of its blocks is a uniquely (2,t)-list
colorable graph.

The next lemma which is an obvious statement, is useful throughout the paper.

Lemma 5. Suppose that the independent vertices u and v in a graph G take on
different colors in each t-coloring of G. Then the graph G is uniquely (f,t)-list
colorable if and only if G + uv is a uniquely (f,t)-list colorable graph.

The foregoing two theorems are major steps in the proof of Theorem 11. Before
we proceed, we must recall the definition of a 0-graph. If p, ¢, and r are positive
integers and at most one of them equals 1, by 0, ,, we mean a graph which consists
of three internally disjoint paths of length p, ¢, and » which have the same endpoints.
For example, the graph 0,, 4 is shown in Fig. 2.

Theorem 6. Suppose that G is a 2-connected graph, t = max{3,x(G)}, and G is
not uniquely (2,t)-list colorable. Then G is either a complete or a triangle-free
graph.

Proof. Let G be a graph which is not uniquely (2, #)-list colorable for t=max{3, y(G)},
and suppose that G contains a triangle. For every pair of independent vertices of G,
say u and v, which take on different colors in each ¢-coloring of G, we add the edge
uv, to obtain a graph G*. By Lemma 5, G* is not a uniquely (2, ¢)-list colorable graph.
If G* is not a complete graph, since it is 2-connected and contains a triangle, it must
have an induced 0, , subgraph, say H (to see this, consider a maximum clique in G*
and a minimum path outside it which joins two vertices of this clique). Suppose that
x,y, and z are the vertices of a triangle in H, and y = vy, vy,...,0,—1,0, =z is a path
of length » in H not passing through x. Consider a ¢-coloring ¢ of G* in which x and
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v, take on the same color. We define a 2-list assignment L to H as follows.
L(x) = L(z) = {c(x),c(2)}, L(y) = {c(x),c(»)},

L(v;) = {c(vi), c(vi—1)}, VI<i<r—1.

In each L-coloring of H one of the vertices x and z must take on the color c(x) and
the other takes on the color ¢(z). So y must take on the color ¢(y) and one can see by
induction that each v; must take on the color ¢(v;), and finally x must take on the color
c(x). Now since G* is connected, as in the proof of Lemma 2, one can extend L to
a 2-list assignment to G* such that ¢ is the only L-coloring of G*. This contradiction
implies that G* is a complete graph, and this means that G has chromatic number
n(G), so G must be a complete graph. [

Theorem 7. Let G be a triangle-free 2-connected graph which contains a cycle with
a chord and t = max{3, y(G)}. Then G is uniquely (2,t)-list colorable if and only if
it is not a complete bipartite graph.

Proof. By Theorem A, a complete bipartite graph is not uniquely 2-list colorable. So if
G is uniquely (2, ¢)-list colorable, it is not a complete bipartite graph. For the converse,
let G be a graph which is not uniquely (2, ¢)-list colorable where t=max{3, y(G)}, and
suppose that G contains a cycle with a chord. For every pair of independent vertices
of G, say u and v, which take on different colors in each #-coloring of G, we add the
edge uv, to obtain a graph G*. By Lemma 5, G* is not a uniquely (2, ¢)-list colorable
graph. If G* contains a triangle, by Theorem 6, G* and so G must be complete graphs
which contradicts the hypothesis. So suppose that G* does not contain a triangle.

Consider a cycle viv,...v,v; with a chord vjv,, and suppose H to be the graph
G*[v1,v2,...,0,]. If vyv,—1 & E(H), there exists a ¢-coloring ¢ of G*, such that c(v,)=
c(vs—1). Assign the list L(v;) = {c(v;),c(vi—1)} to each v;, where 1<i< p and vy =v,.
Consider an L-coloring ¢’ for H. Starting from v; and considering each of two possible
colors for it, we conclude that ¢’(v,)=c(v,). So for each 1 <i< p we have ¢'(v;)=c(v;).
This means that H is a uniquely (2,¢)-list colorable graph, and similar to the proof
of Lemma 2, G* is a uniquely (2,¢)-list colorable graph, a contradiction. So v,v,_1 €
E(H) and similarly vyv,41 € E(H). Now, consider the cycle vjvyv,410,0,-10,01 With
chord vyv,. By a similar argument, v,v,1 and vv,_; are in E(H) and so the graph
G*[v1v207410107-10,] is a K33.

Suppose that K is a maximal complete bipartite subgraph of G* containing the
K33 determined above. Since G is triangle-free, K is an induced subgraph of G. If
V(G)\ V(K) # 0, consider a vertex v € V(G) \ V(K) which is adjacent to a vertex
wy of K. By 2-connectivity of G*, there exists a path vu; ...u,w, in which w, € V(K)
and u; € V(K) for each 0<i<r. If w; and w, are in the same part of K, since each
part of K has at least 3 vertices, there exists a vertex ws other than w; and w; in
the same part of K as w; and w, and vertices w{ and w} in the other part of K.
Considering the cycle vu ...u,wawjwswiwiv with chord wiwj, by a similar argument
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as in the previous paragraph, it is implied that v is adjacent to ws. So v is adjacent to
all the vertices of K which are in the same part of K as w;, except possibly to ws,
but in fact v is adjacent to w,, since we can now consider w3 in place of w, and do
the same as above. This contradicts the maximality of K. On the other hand if w; and
wy are in different parts of K, a similar argument yields a contradiction.

We showed that G* =K and it remains only to show that G=G*. If xy is an edge in
G* which is not present in G, using the fact that G is bipartite, one can easily obtain a
t-coloring (t=3) of G in which x and y take on the same color, a contradiction. [

At this point, we will consider graphs that do not satisfy the conditions of
Theorem 7, namely 2-connected graphs in which every cycle is induced. The following
lemma helps us to treat such graphs.

Lemma 8. A 2-connected graph in which each cycle is chordless, has at least a vertex
of degree 2.

Proof. It is a well-known theorem of Whitney [6] that a graph is 2-connected, if and
only if it admits an ear decomposition (for a description of ear decomposition, see
Theorem 4.2.7 in [5]). In the case of the present lemma, since the graph is chordless,
each ear is a path of length at least 2, so the last ear contains a vertex of degree 2. [

If G is a graph and v a vertex of G, we define G, to be a graph obtained by
identifying v and all of its neighbors to a single vertex [v].

Lemma 9. If v is a vertex of degree 2 in a graph G, and G, is uniquely (2,t)-list
colorable for some t, then G is also uniquely (2,t)-list colorable.

Proof. Suppose that v; and v, are the neighbors of v in G. If L is a (2,¢)-list assignment
to G, such that G, has a unique L-coloring, one can assign L(w) to each vertex w
of the graph G except v, vy, and v, and L([v]) to these three vertices, to obtain a
(2, ¢t)-list assignment to G from which G has a unique list coloring. [

The following lemma gives us a family of uniquely (2, 3)-list colorable graphs, which
we will use in the proof of our main result.

Lemma 10. Aside from 0,5 ,=K, 3, each graph 0, ., is uniquely (2,3)-list colorable.

Proof. Suppose that G=0,,, is a counterexample with minimum number of vertices,
and u and v are the two vertices of G with degree 3. If one of p, ¢, and r is 1, then
G is a cycle with a chord and we have nothing to prove. Otherwise, suppose that one
of the numbers p, ¢, and r, say p is odd, and there exists a vertex w on a path with
length p between u and v. Then by Lemma 9, the graph G,, is not a uniquely (2, 3)-list
colorable graph, a contradiction. Hence, p =1 and we yield to the previous case.

So assume that p,q, and r are all even numbers. By the hypothesis, at least one of p,
q, and r, say r, is greater than 2. If either p > 2, ¢ > 2, or r > 4, by use of Lemma 9,
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Fig. 2. The graph 0, 4.

we obtain a smaller counterexample to the statement, which is impossible by minimal-
ity of G, s0 G =0,2.4. In Fig. 2 there is given a (2,3)-list assignment to 0,4 which
induces a unique list coloring. This shows that G is a uniquely (2,3)-list colorable
graph, which contradicts the fact that G is a counterexample to the statement. [l

Now we can prove the main result.

Theorem 11 (MAIN). A graph G is uniquely 2-list colorable if and only if it is
uniquely (2,t)-list colorable, where t = max{3, y(G)}.

Proof. By definition, if G is uniquely (2,¢)-list colorable for some ¢, it is uniquely
2-list colorable. So we must only prove that every uniquely 2-list colorable graph G is
uniquely (2,¢)-list colorable for t=max{3, y(G)}. Suppose that G is a counterexample
to the statement with minimum number of vertices. By Theorem 4, G is 2-connected,
by Theorem 6, it is triangle-free (by Theorem A it cannot be a complete graph), and
by Theorem 7, it does not have a cycle with a chord, so Lemma 8 implies that G has
a vertex v with exactly two neighbors v; and v;.

Consider the graph H =G\ v and note that since degv=2, we have max{3, y(H)} =
max{3, 7(G)}. So if H is uniquely 2-list colorable, by minimality of G, the graph H
must be uniquely (2,¢)-list colorable, and since >3 and degv =2, we conclude that
G is uniquely (2, ¢)-list colorable, a contradiction. Therefore, H is not a uniquely 2-list
colorable graph and because it is a triangle-free graph, by Theorem A every block of
H is either a cycle of length at least four or a complete bipartite graph. This shows
that ¢ = 3.

We will show by case analysis that G has an induced subgraph G’ which is isomor-
phic to some 0,4, # 02, (except in case (i.2)). The graph G’ is uniquely (2,¢)-list
colorable by Lemma 10. Now a (2,3)-list assignment to G’ with a unique list coloring
can simply be extended to the whole of G. This completes the proof. [J

To show the existence of G’ we consider two cases.
(i) The graph H is 2-connected. So H is either a K5, a cycle, or a complete bipartite
graph with at least two vertices in each part. If H=K, then G=K3, a contradiction.
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(i.1) If H is a cycle, G is a 6-graph and G’ = G. Note that since G is uniquely
2-list colorable, G’ = G is not isomorphic to 0, .

(1.2) If H is a complete bipartite graph, since G is triangle-free, v; and v, are in
the same part in H. Now there must exist at least one other vertex v; in that
part — otherwise G will be a complete bipartite graph. Suppose that u; and
u, are two vertices in the other part of H. The graph G’ induced from G on
{v,v1, 02,03, u1,u2} is a uniquely (2,3)-list colorable with the list assignment
L as follows: L(v) = {1,2}, L(vy) = {1,3}, L(v2) = {1,2}, L(v3) = {2,3},
L(ur) ={2,3}, L(uz) = {1.3}.

(i1) The graph H is not 2-connected. Since G is 2-connected H has exactly two
end-blocks each of them contains one of v; and v,.
If all of the blocks of H are isomorphic to K, then G is a cycle which is im-
possible. So H has a block B with at least three vertices. Since B is a cycle
or a complete bipartite graph with at least two vertices in each part, it has an
induced cycle C which shares a vertex with at least two other blocks. Since G
is 2-connected, these two vertices must be connected by a path disjoint from B.
Suppose that P is such a path with minimum length. The graph G’ =C UP is the
required 0-graph. [J

3. Concluding remarks

We begin with a definition which is a natural consequence of the aforementioned
results.

Definition 12. For a graph G and a positive integer k, we define y,(G,k) to be the
minimum number ¢, such that G is a uniquely (k,¢)-list colorable graph, and zero if
G is not a uniquely k-list colorable graph. The uniquely list chromatic number of a
graph G, denoted by y,(G), is defined to be max; > y,(G, k).

In fact, Theorem 11 states that for every uniquely 2-list colorable graph G, y,(G,2)=
max{3, 7(G)} and by Brooks’ theorem and the fact that for every uniquely 2-list col-
orable graph G, A(G)>=2, we have shown that y,(G,2)<A4(G) + 1. This seems to
remain true if we substitute 2 by any positive integer k.

Conjecture 13. For every graph G we have y,(G)<A(G)+ 1, and equality holds if
and only if G is either a complete graph or an odd cycle.

The above conjecture implies the well-known Brooks’ theorem, since for every graph
G we have x,(G,1)=x(G), and so x(G)<y,(G). Hence, the above conjecture implies
that y(G)<4(G) + 1. On the other hand, if y(G)= 4(G) + 1, we will have y,(G)=
A(G) + 1 and the conjecture above implies that G is either a complete graph or an
odd cycle.
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