
EUROCON 2005 Serbia & Montenegro, Belgrade, November 22-24, 2005

�
Abstract — A design approach to create small-sized high-

speed implementations of the Keyed-Hash Message
Authentication Code (HMAC) is presented. The proposed
implementation can either operate in HMAC-MD5 and/or in
HMAC-SHA1 mode. The proposed implementations do not
introduce significant area penalty. However the achieved
throughput presents an increase compared to commercially
available IP cores that range from 30%-390%. The main
contribution of the paper is the increase of the HMAC
throughput to the required level to be used in modern
telecommunication applications, such as VPN and the
oncoming 802.11n.

Keywords — Security, message authentication, hash
function, high-speed HMAC, VLSI implementation.

I. INTRODUCTION

ASH functions are common and critical cryptographic
primitives. Their primary application is combined use

with public-key cryptosystems in digital signature
schemes. The most widespread functions are SHA-1
(Secure Hash Algorithm- 1) [1], and MD5 (Message
Digest) [2]. These two hash functions are widely known
for being used in the Keyed-Hash Message Authentication
Code (HMAC) [3], which is met in numerous
communication applications, to address authentication
issues.

The SHA-1 hash function was selected for the Digital
Signature Algorithm (DSA), as specified in the Digital
Signature Standard (DSS) [4], and whenever a secure hash
algorithm is required for federal applications. The latter
hash functions are used widely in the field of
communications, where until nowadays throughput of the
cryptographic systems was not required to be high.
However, since the use of the HMAC in the IPSec [5], e-
payment and VPN applications, the throughput of the
cryptographic system, especially the server, has to reach
the highest degree of throughput. Especially in applications

We thank European Social Fund (ESF), Operational Program for
Educational and Vocational Training II (EPEAEK II) and particularly the
program PYTHAGORAS.

I. Yiakoumis, M. Papadonikolakis, and H. Michail are students. They
are with the Dpt. of Electrical & Computer Engineering, University of
Patras, Greece (phone: +30 2610-997-324; fax: +30 2610-994-798; e-
mail: {yiakoumi, markos, michail} @ee.upatras.gr).

A. P. Kakarountas and C.E. Goutis are with the Dpt. of Electrical &
Computer Engineering, University of Patras, GR-26500, Patras, Greece
(phone: +30 2610-997-283; fax: +30 2610-994-798; e-mail: {kakaruda,
goutis} @ee.upatras.gr).

that transmission and reception rates are high, any latency
or delay on calculating the digital signature of the data
packet leads to degradation of the network’s quality of
service. Software implementations are presenting
unacceptable performance for high-speed applications.
Also poor performing and bulk implementations of HMAC
IP cores are met even nowadays in the market.

The latter facts were a strong motivation to propose a
novel hardware implementation of the HMAC. Thus, this
paper aims to provide a low-cost design approach,
compared to the proposed solutions from both academia
and industry, in order to satisfy the requirements of the
new communication applications. It introduces a negligible
area penalty; increasing the throughput and keeping the
area small enough as required by most portable
communication devices. The main contribution of this
work is the design approach to optimize performance
without introducing extra area.

The rest of this paper is organized as follows. In Section
II, the proposed HMAC architecture is presented. Section
III presents the proposed implementation in depth along
with the two hash functions, providing details regarding
the architecture, the logic and the modifications to
decrease the critical path, and the characteristics of the
circuit that are expected. In Section IV the proposed
HMAC is implemented for an FPGA technology and it is
compared to other implementations. Finally, in Section V
the paper concludes.

II. THE HMAC ALGORITHM

The HMAC standard [3] defines a special mechanism
that guarantees message authentication for transmission
through a non-secure communication channel. The main
idea is the use of a cryptographic hash function (usually
the MD5 or SHA-1). The purpose of the HMAC is to
authenticate both the source of a message and its integrity.
The main parameters of the HMAC are the message input
and the secret key, which is known only to the message
originator and the intended receiver(s). The main function
of the HMAC is the generation of a value (the MAC),
formed by condensing the message input and the secret
key. The MAC value is sent along with the message and
the receiver has to evaluate that the received message
generates the received MAC value, using the secret key
which is agreed between the message originator and the
receiver. The final MAC value is given by the expression
shown in (1), where text is the plain text of the message, K

Efficient Small-Sized Implementation of the
Keyed-Hash Message Authentication Code

Ioannis Yiakoumis, Markos Papadonikolakis, Harris Michail, Student Members, IEEE,
Athanasios P. Kakarountas, Member, IEEE and Costas E. Goutis, Member, IEEE

H

1-4244-0049-X/05/$20.00 ©2005 IEEE

1875



is the secret key and K0 is K appended with zeros to form a
mod32(n) byte key, ipad and opad are predefined constants,
and � is bitwise XOR.

� � � �� �� �textopadKHipadKHtextKHMAC ��� 00),( (1)

III. PROPOSED HMAC IMPLEMENTATION

The architecture of the proposed HMAC offers a
significant benefit concerning the maximum achieved
operation frequency. The critical path is observed to the
Hash Core block, where the hash functions are
implemented. This allows design effort to be focused on
the Hash Core and the optimization of the hash functions’
critical path. Following, the two hash functions are
presented, along with some critical optimizations on the
critical path. Solutions are offered for applications that
require either sole HMAC-MD5 or -SHA1, or a combined
HMAC-MD5-SHA1.

A. SHA-1 Hash Function

The SHA-1 hash function is an iterative algorithm that
requires 80 transformation steps to generate the final hash
value (Message Digest – MD). In each transformation step,
a hash operation is performed that takes as inputs five 32-
bit variables (a,b,c,d,e), and two extra 32-bit words (one is
the message schedule, Wt, which is provided by the
Padding Unit, and the other word is a constant, Kt,
predefined by the standard). The calculations that take
place in each operation (clock cycle t) are described below
in (2), where ROTLx(y) represents rotation of word y to the
left by x bits and ft(z,w,v) represents the non-linear function
associated to clock cycle t.

� �

� � � � tttttttt

tt

tt

tt

tt

WKdcbfaROTLa

ab

bROTLc

cd

de

����
�
�
�
�

����

�

�

�

�

11115

1

130

1

1

,,

(2)

The linear function ft is changing every 20 cycles. Thus,
the SHA-1 is divided in four rounds of 20 identical
operations, based on the used non-linear function. The
hash value resulted from the 80 iterations is a 160-bit MD.

From (2), it is easily extracted that the critical path is
located in the calculation of at, which is equal to the delay
of three Carry-Propagate Adders (CPA). Several
implementations that have been proposed for the SHA-1
hash function [6],[7], do not pay the appropriate design
effort on this critical notice, considering that the synthesis
tool will find the optimal solution. However in [8] there is
a design approach that tries to exploit the characteristics of
the Carry Save Adder (CAS) in order to minimize the
critical path.

Fig. 1. The modified SHA-1 operation block, separated
in two calculation phases.

The proposed design approach to optimize the critical
path, exploits the fact that at is calculated using the inputs
of cycle t-1. Thus, some intermediate values can be pre-
computed, stored in a register and used without
introducing any delay. So, (2) is transformed in (3) in
order to reduce the critical path. Some observations can be
made analyzing (3). First, the introduced area penalty is a
single register that stores the intermediate value gt-1.
Second, power dissipation is kept low and almost the same
to that of the initial implementation. The extra power
dissipation is that of the read/write operations of the
introduced register. On the other hand, the paths are
shortened and balanced, reducing the glitches and the
dynamic power dissipation on the circuit’s wires. The new
operation block of the SHA-1, as resulted from the
application of the pre-computation stage is illustrated in
Fig. 1, and presents a delay of two adders, synthesized as a
CSA and a CPA. The introduction of this pre-
computational stage is a novel design approach.

� �

� �

1 1 1

1 1 1

1 1 30 1

1 1 1

1 1 5 1 1 1

1 1

,

,

,

,

,

t t t t t

t t t t

t t t t

t t t t

t t t t t t

t t t t

e e K W e d

d d d c

c c c ROTL b

b b b a

a a a ROTL a e g

g f b c

� � �

� � �

� � �

� � �

� � � � �

� �

	 	� � � � � �
	 	� �������������� � �

	 	� ��������������� � �

	 	� ���������������
� �

	 	 	� �������������� � � � �

� � �1 1, td� �

.(3)

B. MD5 Hash Function

MD5 is an improved version of MD4, which addresses
several known successful attacks on MD4 [9]. As in SHA-
1, MD5 focuses on the transformation of an initial input,
through iterative operations. MD5 produces a 128-bit MD,
instead of the 160-bit hash value of SHA-1. Additionally,
there are still four rounds, consisting however of 16
operations each. There are four 32-bit (a,b,c,d) inputs and
two extra 32-bit values (one is the message schedule, Mt,
which is provided by the Padding Unit, and the other word
is a constant, Lt, predefined by the standard) that are
transformed iteratively to produce the final MD. The
calculations that take place in each operation (clock cycle
t) are described below in (4), where fnt(z,w,v) represents

1876



the non-linear function associated to clock cycle t.
Rotation in (3) is performed for s positions, which varies
from cycle to cycle and is pre-defined by the standard [2].

� �� �
1

11111

1

1

,,

�

�����

�

�

�
�����

�
�

tt

tttttttstt

tt

tt

da

LMdcbfnaROTLbb

bc

cd
(4)

The critical path is located on the calculation of a sole
output, bt. A pre-computational stage can be applied also
to this hash function to reduce the critical path.

C. HMAC Implementation Scenarios

As already mentioned, HMAC can be implemented
either including one sole hash function, or two hash
functions combined to operate when selected. Also, both
SHA-1 and MD5 hash functions have an identical
parameter; they both have four discreet rounds. The above
offer a wide range of characteristics of the HMAC
implementation that if exploited wisely, can give solutions
depending on the nature of the application.

1) Rolling Loop Technique: If the critical parameter is
small area, a rolling loop technique can be applied. As
illustrated in Fig. 3, the output of the operational block is
fed back to the input through pre-computation stage.
Notice that the main benefit of the insertion of the pre-
computation stage is that at, which is the output of the final
calculation block, enters the pre-computation stage as the
new at-1, which is a wire directly connected to the register.
This technique allows small-sized implementations through
re-use of the same configurable operation block.
Configurability issues have to address correct selection of
the non-linear function for both hash functions and the
rotate positions for the case of MD5.

2) Pipeline Technique: If the critical design parameter is
performance, with a more relaxed area constraint, then
pipeline can be applied. As already mentioned a common
characteristic of the two hash functions is the four rounds.
Thus, applying a pipeline stage to every round, result in
quadruplicating of the achieved throughput. This technique
exploits small-sized implementations based on rolling loop
and the characteristic of the four rounds to result in
relatively small sized implementations, achieving
throughput four times higher than the limit imposed by the
design of the operation block of the hash function.

3) Sole Hash Function: In the case of implementing
HMAC-MD5 or HMAC-SHA1, the throughput is directly
associated to the maximum operating frequency of the hash
function’s operation block. The proposed modifications of
the two hash function reduce significantly the critical path
making. As shown in the next section, the implementation
of HMAC-MD5 or HMAC-SHA1, using the pre-
computational stage, scores a 30% increase of throughput,
if no pipeline is applied.

4) Co-Existence of the Two Hash Functions: In many
applications there is the need for the selective use of SHA-
1 or MD5. There are two design approaches for co-
existence of the two hash functions. The first is the

implementation of the two hash functions as separate cores
and selection through a multiplexer. Although this
approach presents low design complexity it is not optimal
for small-area requirements and power dissipation is also
considerably high. The second design approach is the
exploration of the two hash functions to locate resources
that can be used by both functions. In this case area
requirements are reduced and extra power dissipation is
only a factor of the latter approach.

IV. IMPLEMENTATION AND RESULTS

Considering the latter mentioned implementation
scenarios, several HMAC designs were implemented to
verify and evaluate the value of the presented design
approach. The designs were captured in VHDL and were
fully simulated and verified using the Model Technology’s
ModelSim Simulator. A large number of test vectors were
used to verify the designs’ functionality, either adopted
from the standarts [1],[2],[3], or randomly created. The
XILINX FPGA technologies were selected as the targeted
technologies, synthesizing the designs for the VIRTEX,
VIRTEX-II, VIRTEX-E and SPARTAN3 device families.
The selection of the technologies was based on the
available information from commercial IP cores
[10],[11],[12],[13],[14],[15] and research works
[6],[7],[8]. The synthesis tool used to port VHDL to the
targeted technologies was Synplicity’s Synplify Pro
Synthesis Tool. Simulation of the designs was also
performed after synthesis, exploiting the back annotated
information that was extracted from the synthesis tool.
Further evaluation of the designs was performed using the
prototype board for the Xilinx Virtex-E device family. The
FPGA device on the board is an XCV1600EBG560.

A. Results of the Implementations

In Table I, the characteristics of the HMAC
implementations are offered. Only implementations of the
Virtex-E FPGA family were fully verified and numbers
reflect experimental results. The results of the rest FPGA
technologies are provided as reported from the Synplicity’s
synthesis tool. The implementation of the combined hash
functions is considered for two target design parameters,
performance optimized which uses implementation of two
separate cores and selection through a multiplexer, and
area optimized which exploits commonly re-used
primitives. The reported throughput corresponds to a
design approach with rolling loop technique applied but
without pipeline. If pipeline technique is applied then
throughput is quadrupled and the area is increased by 3.21
times in average. Notice that is the first time that an
implementation without pipeline exceeds 1 Gbps in
Virtex-II FPGA technology.

TABLE I
CHARACTERISTICS OF THE PROPOSED HMAC IMPLEMENTATIONS FOR THE

TARGETED FPGA TECHNOLOGIES

HMAC Slices
Op.Frequency

(MHz)
Throughput

(Mbps)
Xilinx Virtex (-6)

SHA-1 686 91 582.4

1877



HMAC Slices
Op.Frequency

(MHz)
Throughput

(Mbps)
MD5 612 55 440.0

SHA-1 &
MD5 (perf.)

1100 55
352.0
440.0

SHA-1 &
MD5 (area)

780 53
339.2
424.0

Xilinx Virtex-II (-6)
SHA-1 854 162 1036.8
MD5 797 96 768.0

SHA-1 &
MD5 (perf.)

1357 96
614.4
768.0

SHA-1 &
MD5 (area)

982 81
518.4
648.0

Xilinx Virtex-E (-8)
SHA-1 686 111 710.4
MD5 612 65 520.0

SHA-1 &
MD5 (perf.)

1100 65
416.0
520.0

SHA-1 &
MD5 (area)

780 61
390.4
424.0

Xilinx Spartan-3 (-4)
SHA-1 750 87 543.0
MD5 665 62 480.0

SHA-1 &
MD5 (perf.)

1090 62
387.0
480.0

SHA-1 &
MD5 (area)

882 43
275.2
344.0

In Table II the characteristics of the commercial HMAC
IP cores are reported in order to make comparison
Additionally, the characteristics of [6],[7],[8] SHA-1
implementations (not HMAC-SHA1) are reported in order
to make a fair comparison. Recall that the results in Table I
are for implementations with no pipeline stages. The work
in [7] reports four pipeline stages, so the appropriate
anagogic function has to be performed in order to calculate
the characteristics of the proposed implementation. Every
single SHA-1 implementation (not an HMAC-SHA1) is
marked with a * at the start. These designs are offered as a
reference, due to the explicit dependency of the maximum
operating frequency of the HMAC from the critical path of
the used hash function. Analyzing the performance of the
implementations presented in Table II, it can be observed
that throughput of the proposed HMAC implementations
exceeds those of the available commercial IP cores by
30%- 390%.

TABLE II
CHARACTERISTICS OF THE PROPOSED HMAC IMPLEMENTATIONS FOR THE

TARGETED FPGA TECHNOLOGIES

HMAC Slices
Op.Frequency

(MHz)
Throughput

(Mbps)
Xilinx Virtex (-6)

*SHA-1 [6] 1004 43 119.0
*SHA-1 [6] 1004 43 119.0

*SHA-1 [7] 2245 55
1339.0
(334.8)

*SHA-1 [8] - 86 530.0
SHA-1 [10] 686 70 442.0

Xilinx Virtex-II (-6)
*SHA-1 [12] 573 140 874.0
*SHA-1 [14] 612 79 498.1
*MD5 [12] 613 96 744.0
*MD5 [14] 614 62 488.3
*MD5 [15] 844 60 472.0

SHA1 & MD5
[12]

888 95
593.0
736.0

Xilinx Virtex-E (-8)

HMAC Slices
Op.Frequency

(MHz)
Throughput

(Mbps)
*SHA-1 [13] 716 71 449.0
*SHA-1 [14] 612 72 451.9
*MD5 [14] 605 50 393.8
SHA-1 [11] 579 66 422.4
MD5 [11] 324 50 400.0

Xilinx Spartan-3 (-4)
*SHA-1 [12] 677 87 543.0
*MD5 [12] 630 63 488.0
MD5 [11] 630 38 304.0

SHA-1 & MD5
[12]

1010 62
387.0
480.0

The designs that are marked with a ‘*’ are indicating implementations
of the described hash functions, not HMAC implementations.

V. CONCLUSION

A novel design approach for the development of small
sized and high-speed HMACs was presented in this paper.
It was showed that the critical path can be further reduced,
by exploiting special properties of the included hash
functions. The proposed implementations were expected to
present at least 30% higher throughput than any other
available implementation. Significant design effort was
paid to keep area low. The experimental results showed
that a negligible area penalty was introduced for achieving
an increase in throughput that ranged from 30%-100%
compared to the competing implementations. Finally the
design was fully tested and verified for the Xilinx Virtex-E
FPGA family using a prototype board.

REFERENCES

[1] Secure Hash Standard (SHS) (Standard). National Institute of
Standards and Technology (NIST). FIPS PUB 180-2 Standard,
2002.

[2] R.L. Rivest, “The MD5 Message Digest Algorithm,” in IETF
Network Working Group, RFC 1321, 1992.

[3] The Keyed-Hash Message Authentication Code (HMAC)
(Standard). National Institute of Standards and Technology (NIST).
FIPS PUB 198 Standard, 2002.

[4] Digital Signature Standard (DSS) (Standard). National Institute of
Standards and Technology (NIST). FIPS PUB 186-2, 2000.

[5] IP Security Protocol Charter (IPSEC). Internet Drafts for IPSec.
Available: http://www.ietf.org/html.charters/ipsec-charter.html

[6] S. Dominikus, “A Hardware Implementation of MD-4 Family
Hash Algorithms,” in Proc. IEEE International Conference on
Electronics, Circuits and Systems (ICECS’02), 2002, pp. 1143–
1146.

[7] N. Sklavos, G. Dimitroulakos, and O. Koufopavlou, “An Ultra
High Speed Architecture for VLSI Implementation of Hash
Functions,” in Proc. IEEE International Conference on
Electronics, Circuits and Systems (ICECS’03), 2003, pp. 990–993.

[8] T. Grembowski, R. Lien, K. Gaj, N. Nguyen, P. Bellows, J. Flidr, T.
Lehman, and B. Schott, “Comparative Analysis of the Hardware
Implementations of Hash Functions SHA-1 and SHA-512,” in
Proc. Information Security Conference (ISC’02), Springer-Verlag,
Heidelberg, 2002, pp. 75–89.

[9] B. den Boer, and A. Bosselaers, “An attack on the last two rounds
of MD4,” in Proc. of CRYPTO, Advances in Cryptology (CRYPTO
’91), Springer Verlag, Berlin, Heidelberg, 1992, pp. 194-203.

[10] ALMA Technologies. Available: http://www.alma-tech.com
[11] Bisquare Systems Private Ltd. Available: http://www.bisquare.com
[12] Helion Technology Ltd. Available: http://www.heliontech.com
[13] Intron, Ltd. Available: http://www.lviv.uar.net/~intron/
[14] Ocean Logic Ltd. Available: http://www.ocean-logic.com
[15] Amphion. Available: http://www.amphion.com/index.html

1878


