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Abstract
Hundreds of thousands of accelerators are used to train LLMs, with
accelerators connected by packet-switched AI fabrics. In this paper,
we ask if the fabric can be built entirely from time-synchronized cir-
cuit switches instead. The goal would be to reduce power, increase
switching capacity, or reduce the number of network tiers.

It appears to be possible, because traffic patterns are largely
known a priori. We describe a tool that analyzes the training code
and deduces a sequence of permutations that will correctly schedule
a crossbar throughout the training run. Expert parallelism (used
with mixture-of-experts models) is the only form of parallelism that
cannot be pre-scheduled. For MoE traffic, we show how Birkhoff-
von Neumann decomposition can be used to schedule the crossbar
on demand.

CCS Concepts
• Networks→ Network design principles; • Hardware→ Net-
working hardware.

Keywords
AI Fabric, Network Architecture, Circuit Switch, Optical Switch,
Scheduling Algorithm
ACM Reference Format:
Sundararajan Renganathan and Nick McKeown. 2025. Chronos: Presched-
uled circuit switching for LLM training. In 2nd Workshop on Networks for
AI Computing (NAIC ’25), September 8–11, 2025, Coimbra, Portugal. ACM,
New York, NY, USA, 9 pages. https://doi.org/10.1145/3748273.3749210

1 Introduction
In large LLM training systems, accelerators are interconnected
using a packet-switched fabric: a scale-up network connects acceler-
ators within a rack (e.g., NVLink [35], TPU ICI [21], AMD Infinity
Fabric [49], AWS NeuronLink [46]), and a scale-out network con-
nects racks together (e.g., Infiniband [34], RoCE [14], UEC [52]).
Packet switching works great when traffic is unpredictable. The
super power of packet switching is its ability to efficiently carry
heterogeneous applications with a best-effort service model.

In contrast, LLMs are trained on a purpose-built, carefully tuned
system with software honed to carry as much data as possible, as
quickly as possible, with minimal latency, in successive rounds
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of communication. Variable latency is considered bad because a
round must wait for straggling data to complete. Training systems
therefore rely on an over-provisioned fabric [14] to make it un-
likely congestion will take place; an approach that is inefficient in
terms of power and cost. And it will still have occasional hotspots
that delay training cycles [39]. Essentially, training networks have
unpredictable latency and throughput, which seems a bit counter-
intuitive given the enormous investment in training systems to
complete as fast as possible.

However, LLM training traffic is regular and predictable and
is largely determined before the training run starts [24, 40]. The
model developer decides when the messages are sent, how large
they are, and who they are sent to. It is therefore interesting to ask
whether packet switches are the optimal way to carry data in a
training system.

In particular, we ask:Would a circuit switched fabric, built from
pre-scheduled crossbar switches, and cognizant of the traffic patterns
and sequence of arrivals, allow LLM training systems to complete
sooner and/or consume less power?

Circuit switches usually add circuits one at a time, when a new
call starts. We are going to see if we can pre-schedule the traffic
for the entire training run upfront, using knowledge of the traffic
pattern and the topology, and hence predetermine the configura-
tion of the crossbar switches needed to transfer data in successive,
fixed-length time slots. We envisage simple switches: no packet
buffers, no forwarding tables, and no packet processing. Delays are
predictable and minimized. We will assume that the fixed-length
time slots time-synchronize the whole system, which is therefore es-
sentially centrally controlled, albeit with fault-tolerant mechanisms
to minimize downtime when switches, links, NICs, accelerators,
CPUs and memories fail.

LLM training systems employ several parallelisms, such as data
parallelism [43], tensor parallelism [48], pipeline parallelism [17,
30], sequence parallelism [22], and context parallelism [27]). Each
parallelism requires communication between a specific set of ac-
celerators in a specific order. An important exception is expert
parallelism used with Mixture-of-Experts (MoE) [11, 28] where traf-
fic patterns are input-dependent and not known until the routing
layer decides which expert the tokens should be sent to. We show
how to schedule MoE traffic (and any asynchronous traffic) on the
fly using Birkhoff-von Neumann [8, 54] decomposition.

Our long-term goal is to design an AI fabric that maximizes the
AI fabric’s total capacity (in bits/s) divided by its overall power
consumption. We conjecture that a pre-scheduled crossbar-based
AI fabric will consume a fraction of the power of today’s Ethernet
and proprietary NVlink-based systems, and can reduce the network
tiers by increasing switch fanout.

In this short paper, we describe a high-level design for a circuit-
switched fabric built from simple crossbar switches. We show how
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to derive the switch schedules for the entire run, up front, directly
from the training code. And we show how unpredictable traffic
(in expert parallelism and control traffic) can be scheduled quickly
and efficiently. We argue that the system is as at least as reliable as
today’s packet-switched systems.
Contributions.

1. We propose Chronos, which we believe is the first AI fabric
design to use only pre-scheduled crossbar circuit switches,
leveraging known a priori training traffic patterns.

2. A technique (and tool) to analyze the training source code,
generating a sequence of permutations to schedule the cross-
bar switches for the training run.

3. Chronos handles unpredictable traffic (e.g., mixture-of-experts,
management and control messages) by calculating the circuit
switch permutations on-the-fly using Birkhoff-vonNeumann
decomposition.

2 Related Work
While prior work has investigated circuit switching for conven-
tional datacenter traffic [6, 36, 37, 53], to our knowledge, we are
the first to do so for the entire AI fabric during LLM training. Our
work is largely inspired by Google’s “lightwave” network [26] for
dynamically creating clusters of TPU nodes prior to AI training,
to exploit the pre-determined synchronous traffic patterns used by
standard models of parallelism used by collectives. The authors pro-
vide an excellent survey of prior proposals for all-optical networks
and pre-existing optical circuit switching techniques (Appendix
C of [26]), as well as their development and deployment of the
Palomar MEMS optical circuit switches, at scale. Our work differs
in four ways: (1) Chronos takes circuit switching to the extreme by
studying what happens if we replace every packet switch with a cir-
cuit switch, including at the top-of-rack. (2) Chronos is agnostic to
the technology used to build the switches, whether they are optical
or electrical; although of course the behavior will differ in terms
of switching time, optical transparency and power. (3) Chronos
supports unpredictable traffic that is not pre-determined, including
the increasingly important MoE parallellism. And to be clear, (4)
Chronos is a paper study; there is no prototype or deployment.

Previous authors have noted the predictability of communication
patterns during LLM training [24, 40, 41, 55], but to our knowledge
no-one has used it to completely pre-schedule the network ahead
of time.

3 A priori knowledge of traffic patterns
Model developers use collectives to implement each type of par-
allelism (except MoE, which we study in Section 8). Collectives
are patterns of communication between pre-determined groups
of accelerators, rather than between individual pairs [32]. It helps
to think of accelerators as arranged in an 𝑛-dimensional array,
where 𝑛 is the number of types of parallelism and each parallelism
communicates in one dimension. Collectives, such as all-reduce,
reduce-scatter, and all-gather, are used to communicate among accel-
erators within a parallelism, typically using logical rings.1 Figure 1

1Previous authors have used topology knowledge to accelerate collectives [10, 29, 45,
47, 60]. Our examples assume ring-based collectives but can in principle be extended
to other implementations.

shows a logical ring among four GPUs in the same parallelism
group, and the corresponding permutation matrix.

0 1 0 0

0 0 1 0

0 0 0 1

1 0 0 0

GPU 0 GPU 1

GPU 3 GPU 2
Destination GPU

So
ur

ce
 G

PU

Figure 1: An example logical ring involving four GPUs (left)
and the corresponding permutation (right).

In our approach, we determine the set (or “stack”) of all permuta-
tions needed for a training run. Section 5 describes how we derive
the permutations from the training source code. If all the accel-
erators are connected by one big circuit switch then the stack of
permutations forms a schedule used to configure the central switch
in successive rounds of communication, with one permutation per
time slot. In big systems the fabric is a multistage hierarchy of
circuit switches, and so we need to decompose the network-wide
permutations into a local set of permutations for each switch. The
decomposition is trivial if each tier has the same capacity (i.e. the
fabric is not oversubscribed); we simply route all traffic via the top
tier and back down again. If we want to switch locally (to reduce
power, or because of oversubscription at higher tiers), we can use
the method described in Section 6 and can potentially use shorter
time slots locally than globally.

4 Circuit switches are simpler
A circuit switch can be built using a crossbar switch in which,
during a time slot, each input is connected to at most one output
and each output is connected to at most one input, as represented
by the permutation matrix in Figure 2.2

0 0 0 1

0 1 0 0

1 0 0 0

0 0 1 0

So
ur
ce

Destination

Figure 2: An example 4x4 crossbar switch (left) configured
by a permutation matrix (right).

2In principle, multicast and broadcast can be useful to accelerate collectives, but we
don’t consider them in this paper.
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Circuit switches are much simpler than packet switches because
they have less to do. A typical single-chip Ethernet packet switch
has 30% of its area dedicated to serial I/O, 50% to packet processing
and 20% to packet buffers and the traffic manager [9]. An circuit
switch does not need packet processing logic, lookup tables, or
packet buffers, because arriving packets are immediately switched
to a pre-determined output. This makes possible electronic circuit
switches with 70% of the area freed up, which means (a) lower
power, or (b) we can repurpose the area to add more I/O capacity
(e.g., using area I/O [59]).

Circuit switches have deterministic, low latency; a few nanosec-
onds for an electrical or optical circuit switch, compared to variable,
unpredictable latency in packet switches.

Optical circuit switches bring additional benefits, including opti-
cal transparency and hence can carry data independent of wave-
length and data rate.

5 Deriving permutations from training code
We wrote a software tool Genstack to derive the switch permu-
tations from the training code. It operates in two steps: First, it
replaces collective calls with logging code and instruments how the
collectives are called. Second, it combines collective calls into global
permutations that capture communications among all accelerators.
We describe the two steps in detail below. Our results are based on
Megatron-LM [31], a popular and open framework for LLM training,
and can be used with other LLM training frameworks [1, 2, 44].

5.1 Logging the collectives
Genstack logs all collective calls (e.g. all_reduce, all_gather,
broadcast, etc.) invoked by a single iteration of training, along
with their tensor shapes and participating GPUs.

But we cannot log the collective calls on the real full-scale system
before we have picked the permutations, and so instead we emulate
a single iteration of training running on a smaller system, without
GPUs. This is still challenging because: (1) We can not manipulate
the full-system high-dimensional model tensors without a large
number of physical GPUs, (2) we can not spawn thousands of GPU
processes, and (3) training code (such as Megatron-LM) condition-
ally invokes communication collectives based on pipeline stage,
tensor-parallel group, and data-parallel group, requiring end-to-end
code execution.

We avoid needingGPUs by usingmeta tensors [38], zero-overhead
tensors that store only shape and dtype. Throughout the model
construction, forward pass, backward pass, and optimizer step, only
the shapes and dtypes are tracked, rather than actual floating-point
data. Operations such as matrix multiplication and layer normaliza-
tion become no-ops during runtime; they skip kernel execution but
preserve shape propagation for the next layer. Then we monkey-
patch torch.distributed to spoof the execution on GPUs, and to
record the collectives rather than executing them. We use multi-
processing to spawn one CPU process for each GPU involved. This
maintains correct control-flow logic without incurring the expense
of real data transfers.

With these patches in place, we run exactly one training itera-
tion (forward + backward + optimizer step). Each process logs the
communication events it experiences locally:

[ {"op": "broadcast", "call_id": 1, "ranks": [0,1], "shape":

[1024, 4096], "dtype": "float16"},

{"op": "all_reduce", "call_id": 2, "ranks": [0,1,2,3], "

shape": [1024, 4096], "dtype": "float16", "reduce_op

": "MIN"}, ... ]

This trace fully captures the GPUs involved and the tensor di-
mensions of each collective call in an iteration. The tool is described
in more detail, with code examples, in Appendix A.

5.2 Deriving permutations from the logs
To derive the stack of global permutations we combine the permu-
tations for each collective call and for each parallelism.

It helps to study a small example. Consider 16 GPUs arranged in a
logical 4×4 array, and using data parallelism (x-axis communication)
and tensor parallelism (y-axis communication). We need to produce
a stack of 16×16 global permutation matrices to schedule the 16×16
crossbar switch.

We will start with data parallelism and consider the rows of
the 4 × 4 array. The rows operate identically and in parallel, call-
ing the same collective operations at the same time, and transfer-
ring the same amount of data. Specifically, they make 𝑛 collective
calls (𝑐1, 𝑐2, . . . , 𝑐𝑛) causing data transfers represented by permuta-
tions 𝑝1, 𝑝2, . . . , 𝑝𝑛 . This allows us to generate global permutations
𝑃1, 𝑃2, . . . , 𝑃𝑛 for the 𝑛 collective calls across rows where 𝑃 𝑗 is gen-
erated by combining the 4×4 permutations for each row. We repeat
the process along each column for tensor parallelism.3

If pipeline parallelism is used, there will be a different stack of
global permutations per pipeline stage in the forward and backward
pass. Each permutation is incomplete because the GPUs in each
pipeline stage only communicate with GPUs in the previous/next
stage (for pipeline parallelism) or with other GPUs in the same
stage (for all the other parallelisms).

Once we have the global permutations, we generate the switch-
local permutations.

6 Time Slots
The duration of a time slot, 𝑇 , is determined by four attributes, (a)
the smallest number of bytes, 𝑏, transferred by a collective com-
munication call, (b) the link speed, 𝑐 , (c) the maximum one-way
latency between endpoints, 𝑡𝑚𝑎𝑥 , and (d) the ‘dead’ time (aka the
‘guard’ time) while a crossbar changes permutation, 𝑡𝑥 , < 10ns for
an electronic switch or an optical switch with tunable lasers, and
about 1ms for a MEMs-based optical switch. The time slot duration
should be chosed so that 𝑇 ≥ 𝑏

𝑐 + 𝑡𝑚𝑎𝑥 + 𝑡𝑥 .
The fabric sends a global synchronization signal to announce

the start of a new time slot (e.g., from a spine switch, with a leader
selection and failover mechanism). This is straightforward in an
electronic switch; optical circuit switches need a way to broadcast
a time sync signal to all end nodes simultaneously. For example,
we can generate the time signal electrically, then convert it to an
optical signal. The signal is broadcast to the end points using a
1-to-N passive coupler at the switch to couple the time slot signal
into the optical links connected to the end nodes.

3The number of global permutations is different for each parallelism.
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The time slot signal is only used to announce a new time slot; it
is independent of the local clock driving the sequential logic in the
accelerators and NICs (at, say, 1GHz). In practice, for electrical and
optical switches, the range of time slot durations 1𝜇𝑠 < 𝑇 < 10𝑚𝑠
and therefore corresponds to 103 − 106 clock cycles of the GPU.

Accelerators will be at different distances from the spine switch
and will “hear” about the start of the new time slot at different
times. If the variation in latencies is small compared to 𝑇 , this does
not matter. The most efficient systems will measure the round-trip
time to every device so that its data arrives at the correct time to
the spine switch. The system designer can decide whether or not
to implement such a mechanism based on the switching efficiency,
𝜂 =

𝑏/𝑐
𝑇

≤ 𝑏/𝑐
𝑏/𝑐+𝑡𝑚𝑎𝑥+𝑡𝑥 , which is the fraction of time useful data is

transferred.

GPUs Tensor Context Pipeline Data

8,192 8 1 16 64
16,384 8 1 16 128
16,384 8 16 16 8

Table 1: Three different configurations of GPUs used to train
the 405B parameter Llama 3 model, using four types of par-
allelism. The entry in the table indicates the degree of each
type of parallelism.

Example 𝑇 for Llama 3. The largest Llama 3 [15] model has
405B parameters and is trained using tensor, context, pipeline and
data parallelism, in the three configurations in Table 1. Data par-
allelism generally transfers the smallest units of data and dictates
the slot time. The amount of data is determined by, (a) the number
of parameters in each layer (because of compute-communication
overlapping [33], the communications kick off after the backward
pass of a bucket finishes, usually for a single layer for the largest
models), (b) the degree of tensor parallelism (because it shards the
parameters within a layer) and (c) the degree of data parallelism as
ring-based collectives divide the transmitted tensor into chunks. If
we denote the parameters per layer 𝑝𝑙 , then 𝑏 =

4𝑝𝑙
𝑇𝑃.𝐷𝑃

, where TP
is the degree of tensor parallelism (first column in the table) and
DP is the degree of data parallelism. The factor of four is because
the gradients are in fp32 format. With 2.8𝐵 parameters per layer,
and a link speed of 800Gb/s, the lowest 𝑏

𝑐 is 109𝜇s across the three
configurations. If 𝑡𝑚𝑎𝑥 is 10𝜇s (2km links) and 𝑡𝑥 =10ns, then we
lose 8.4% throughput.

More examples. A circuit switch that connects accelerators over
200m links running at 400Gb/s, and 𝑏 = 1Mbyte, should use a time
slot𝑇 ≥ 22𝜇 + 𝑡𝑥 . For an electronic switch or an optical switch built
with fast tunable lasers (𝑡𝑥 = 10𝑛𝑠) the efficiency exceeds 95%. If
we replace the switch with an optical MEMS switch with 𝑡𝑥 = 1𝑚𝑠 ,
we need 𝑏 > 150Mbytes for the efficiency to exceed 75%.

7 Failures and Stragglers
It takes weeks to train a large model, and hardware failures are in-
evitable. Periodic checkpoints help, but checkpointing the training
state is expensive and takes time. If the operator checkpoints too
often then training takes too long to complete; not often enough
and training has to be frequently repeated.

Example. Meta reported 419 unexpected interruptions during a
54-day training run of Llama 3 with an MTBF (mean time between
failure) of about three hours [15]. 58.7% of failures were GPUs
(HBM3 issues, SRAM issues, and faulty GPUs), 8.4% were switches
and cables, and 1.7% were NICs.

Before adopting this extreme approach (i.e. using an AI fabric
built entirely from circuit switches), an operator would need to
understand the consequences of hard failures (e.g. components
failing, links breaking) and soft failures (e.g. straggler GPUs that
respond slowly or inconsistently, links that are flapping on and off,
or causing many bit errors).

Answering these questions fully is beyond the reach of our initial
paper study, and so we leave the comprehensive analysis of failures
for further work. However, there is some reason to think the MTBF
of individual components will be about the same: The system will
have the same number of GPUs, CPUs, memories, and NICs as
before. In principle, a circuit switch is likely more reliable than a
packet switch because it is simpler, particularly if it is electronic.
However, given that the system component count is dominated
by other components, this is unlikely to affect the overall system
MTBF.

If the AI fabric fails, or if GPUs miss their time slot, the recovery
process will be different for a circuit switch than for a packet switch.
Generally, packet switches will be more forgiving of timing errors;
on the other hand, it is easier to determine an error in a circuit
switch when data is expected to arrive at a pre-determined time. A
full system design needs to consider the consequences of different
types of error, and map in appropriate standby components as
needed.

In future work, we plan to study if and how the whole system
can be stopped and started synchronously, by controlling the flow
of synchronization messages. If possible, this might allow the sys-
tem to be frozen, interrogated, and possibly healed without losing
system state.

The switch fabric also needs to handle variations in GPU pro-
cessing time - for example, when a GPU takes longer to finish its
calculation than expected. A simple solution is to delay the next
time slot until all data has arrived. Delays would reduce efficiency
and increase the overall training time, and so the system controller
will need to decide how often this can be allowed, and by how
much, before intervention or replacement is required.

Failure tolerance. There have been several proposals to handle
failures during training [4, 13, 20, 51, 58]. We argue that the failure
tolerance of our design is no worse than packet switching, and any
additional traffic during failures can be scheduled using the BvN
decomposition.

Stragglers. Stragglers in training have been investigated by prior
work [23, 25, 56, 57]. While it is easier to identify stragglers in our
design (due to their non-adherence to the time slots) than the status
quo, a definitive answer to the straggler tolerance of our design
requires more study.

8 Handling unpredictable traffic
The programmer does not always know about a particular communi-
cation in advance. For example, control and management messages,

92



Chronos: Prescheduled circuit switching for LLM training NAIC ’25, September 8–11, 2025, Coimbra, Portugal

38 0 22 40

11 24 60 5

0 53 14 33

51 23 4 22

Desired 
Traffic 
Matrix for 
100 cycles

=

Birkhoff von 
Neumann 

decomposition

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

14

1 0 0 0

0 0 0 1

0 1 0 0

0 0 1 0

+4

0 0 1 0

1 0 0 0

0 0 0 1

0 1 0 0

+11

0            0 1 0

0 1 0 0

0 0 0 1

1 0 0 0

+10

0 0 0 1

0 0 1 0

0 1 0 0

1 0 0 0

+40

1 0 0 0

0 0 1 0

0 1 0 0

0 0 0 1

+8

0 0 1 0

0 0 0 1

0 1 0 0

1 0 0 0

+1

1 0 0 0

0 0 1 0

0 0 0 1

0 1 0 0

+12

Figure 3: The Birkhoff-von Neumann decomposition of a traffic demand matrix into permutations. The weight corresponding
to each permutation indicates how many times the permutation is held.

error messages, interrupts and reloading data after a checkpoint. A
big and important example is when the system uses a mixture-of-
experts (MoE) model. The routing of data to experts is implemented
using the all-to-all collective and its input-dependencemakes it hard
to predict or bound the patterns and volume of communication.

Mixture-of-experts splits the transformer’s feedforward network
(FFN) into multiple smaller FFNs (from 8-128 experts) and in expert
parallelism the experts are placed on different accelerators. A rout-
ing layer computes the data (i.e., tokens) to send to each expert,
which tells us the traffic demand matrix between the GPUs.

Whenever the system needs to carry unpredictable traffic, we
need to configure the crossbar switches on demand. We can not
use packet switching, because the switches contain no buffers or
forwarding logic. Instead, we can calculate new permutations on
the fly to carry the traffic pent up in the network interfaces’ VOQ.

Luckily, there is a clever way to turn a traffic matrix into a
sequence of permutations called a Birkhoff-von Neumann (BvN)
decomposition [8, 54]. Figure 3 shows a simple example. Decom-
posing an 𝑁 ×𝑁 matrix produces O(𝑁 2) unique permutations; each
permutation is found using a bipartite matching algorithm. Each
permutation is, in turn, subtracted from the traffic matrix to create
a residual matrix. The permutation is held for consecutive time
slots equal to the minimum entry along the permutation.

If we run a maximum cardinality matching algorithm at every
step (e.g., the Hopcroft-Karp algorithm [16]), the overall time com-
plexity of a BvN decomposition is O(𝑁 4.5). We can instead use a
much fastermaximal (greedy) algorithm [50], which is close to opti-
mal (maximum size). The times to compute the BvN decompositions
on an Apple M1 Max CPU are reported in Table 2. Performance
can be improved with specialized hardware, in particular using
the Wrapped Wave Front Arbiter (WWFA) algorithm [50], which
is known to be the most hardware-efficient maximal matching
algorithm.

We invented a novel hardware algorithm (BhaVaN) that is the
fastest known BvN decomposition. BhaVaN is implemented in Ver-
ilog and uses the WWFA and completes a BvN decomposition in
less than 1𝜇s for a 64-port switch on a 16nm ASIC process. The
design takes up less than 1mm2 and hence would consume less
than 1% of an electronic circuit switch ASIC. If BhaVaN is used with
an optical circuit switch, the algorithm can run on a modified NIC
chip. BhaVaN will be described in more detail in a separate paper.

Time slots. Unpredictable traffic can use a number of successive
time slots dictated by the permutation weights in the BvN decom-
position. For example, if the weight is two, then the permutation is
held steady for two time slots.

N=16 N=32 N=64 N=128 N=256

Maximum 0.5ms 3ms 25ms 291ms 4.45s
Maximal 0.2ms 0.8ms 4.6ms 52ms 0.65s

Table 2: Time to compute BvN decomposition in single-
threaded software for 𝑁 × 𝑁 matrices, different 𝑁 .
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Figure 4: The fraction of tokens received by each expert
across successive training iterations for a GPT-MoE model.
E1 refers to expert 1. Figure taken from [12].

8.1 Performance comparison
We compare the completion time of MoE traffic for our circuit-
switched approach against conventional packet switching. We do
this by generating 1,000 different MoE traffic matrices and simulate
how long the packet-switched network takes to transfer data, and
how long the BvN decomposition takes to run for circuit switching,
plus the transfer time.
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Figure 5: Example generated traffic matrix.

Generating MoE traffic matrices. We generate sample MoE traf-
fic matrices using the data measured by 1,000 successive iterations
of training of a 16-expert GPT-MOE system [12]. The matrices are
quite non-uniform, with 4 out of 16 experts receiving up to 80% of
the tokens (Figure 4). To generate a 16 × 16 traffic matrix, we use
the fraction of tokens received by each expert and randomly spread
them across the source GPUs from which the tokens arrive.4 We
repeat this for every iteration in the training data, to generate 1,000
traffic matrices.5 We use a hidden size of 16,384 and a sequence
length of 8,192 as in Llama 3 405B [15]. Figure 5 shows an example
traffic matrix and the amount of data transferred (in megabytes).

Topology and performance metric. The GPUs that host the
experts are typically connected to the same switch. Our simula-
tions assume a link speed of 800 Gb/s and an RTT of 1 𝜇s. Our
performance metric is the all-to-all completion time.

Simulations. The packet switch is simulated using ns-3 from the
HPCC ns-3 repo [3], with DCQCN [5, 62] as the congestion con-
trol. The circuit switch completion time is calculated by adding the
permutation weights of the BvN decomposition and dividing by
the link speed. For a fair comparison, we tune DCQCN parame-
ters (𝐾𝑚𝑖𝑛 , 𝐾𝑚𝑎𝑥 , 𝑃𝑚𝑎𝑥 , 𝑅𝐴𝐼 , 𝑅𝐻𝐴𝐼 and 𝑔) using a hyperparameter
optimization framework [7, 19].

Figure 6 shows the time to transfer all data to 16 experts, over
1,000 runs, each with a different traffic matrix. The average comple-
tion time for packet switching is approximately 13ms, with clear
peaks during times of congestion. The circuit-switched network
finishes 22.04% faster on average (max 32% faster) because there
are no packet buffers and data is transferred in an orderly fashion.6

4If multiple experts are placed on a single GPU (e.g., 4 experts per GPU [18, 42]), the
traffic matrix is smaller and easier to decompose compared to when all the experts are
placed on different GPUs.
5While not strictly independent samples (they are from the same training run), we
will assume they are, and we use them for 1,000 Monte Carlo simulation runs.
6The performance improvement would be different with a different congestion control
algorithm, which will be the subject of further work.
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Figure 6: Comparison of the all-to-all completion times for
16 experts, for 1,000 iterations.

Furthermore, once the relatively short flows to a given destina-
tion depart, the packet switching control loop is slow to grab the
available bandwidth for the remaining large flows due to uplink
contention at the senders.

Note that the time to decompose the traffic matrix (< 0.5ms for
16 GPUs) is small compared to the transfer time, and very efficient
in this case, with maximal or maximum matching. If MoE starts to
use 256 or more GPUs in the future, we will need to implement it
in hardware, as described above.

9 Discussion
We set out to understand whether it is feasible to build a complete
training system using a circuit-switched fabric, and we started with
three open questions. First, is the majority of traffic predictable? We
conclude that it is and can be deduced from the training code. Sec-
ond, can unpredictable traffic be scheduled on the fly fast enough?
We conclude that it can be, and we invented a very fast parallel
algorithm that can schedule it in less than 1𝜇s. Third, how does
our design handle failures and stragglers? We hypothesize that it
is no worse than packet switching, but this needs further study.
A big unresolved question is understanding the power, cost, and
area benefits of our design compared to packet switching. This is
the topic of further work as it requires prototyping, and we will
embark on this next.

Our proposal focuses on large single-job training runs, but it
can be applied to multi-tenant training clusters by leveraging the
insights in prior work [40, 61], where training jobs are interleaved
so that their communications do not interfere.
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A Genstack: A software tool to log collectives
and generate the global stack of permutations

Meta-Tensor Execution: Since PyTorch 1.9, users can instantiate
meta tensors [38] via:

x = torch.empty(16, 1024, device='meta')

The tensor has no backing memory, but still participates in shape in-
ference.We intercept all tensor creation routines (e.g., torch.zeros,
torch.empty, torch.ones, or model parameter initializations) so
that they produce meta tensors by default:

_orig_empty = torch.empty

def meta_empty(*shape, **kwargs):

return _orig_empty(*shape, device='meta', **kwargs)

torch.empty = meta_empty

# Similarly for zeros, ones, etc.

Spoofing Distributed Processes: We emulate the full training
system on a small CPU-based system in two steps. First, we spawn
𝑁 Python processes (each simulating one rank). Then, each process
assigns ranks in the range [0, 𝑁 − 1] by calling

torch.distributed.init_process_group(backend='gloo',

world_size=N, rank=LOCAL_RANK, store=...)

Because we only use meta tensors, no actual GPU memory is allo-
cated. PyTorch’s distributed initialization runs normally, but subse-
quent collective calls are intercepted.

Intercepting collective calls: All collective calls are monkey-
patched, for example:

• torch.distributed.all_reduce
• torch.distributed.all_gather
• torch.distributed.broadcast
• torch.distributed.reduce_scatter
• torch.distributed.send/recv
• torch.distributed.barrier

We store the original PyTorch functions, but replace them with
wrapped versions to log the call by gathering the call type (e.g.,
all_reduce), tensor shape, dtype, operation type (e.g., SUM), and
rank inferred from the ProcessGroup handle. The calls return im-
mediately with a no-op result, for example:

orig_allreduce = torch.distributed.all_reduce

def wrapped_allreduce(tensor, op, group=None, async_op=False

):

# 1. Identify ranks in 'group' from a stored lookup

table

ranks = group_to_ranks[group]

# 2. Record shape, dtype, etc.

# reduce_op is only logged for all_reduce and

reduce_scatter

log_event({"op": "all_reduce", "call_id":

get_next_call_id(), "ranks": ranks, "shape": list(

tensor.shape), "dtype": str(tensor.dtype), "

reduce_op": "SUM"})

# 3. Return a no-op; skip real comm

return

The wrappers capture exactly which collective calls would be issued
during forward/backward passes and the optimizer step.

Process Groups and Rank Membership. Megatron-LM often
creates logical subgroups (data-parallel, tensor-parallel, pipeline-
parallel) via:

data_parallel_group = torch.distributed.new_group(ranks=

dp_ranks)

We intercept new_group to recordwhich ranks are in a group.When
a collective references a group, our wrapper retrieves the associated
set of ranks.
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