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ABSTRACT

Transport protocols can be implemented in NIC (Network Interface
Card) hardware to increase throughput, reduce latency and free up
CPU cycles. If the ideal transport protocol were known, the opti-
mal implementation would be simple: bake it into fixed-function
hardware. But transport layer protocols are still evolving, with in-
novative new algorithms proposed every year. A recent study pro-
posed Tonic, a Verilog-programmable transport layer in hardware.
We build on this work to propose a new programmable hardware
transport layer architecture, called nanoTransport, optimized for
the extremely low-latency message-based RPCs (Remote Proce-
dure Calls) that dominate large, modern distributed data center
applications. NanoTransport is programmed using the P4 language,
making it easy to modify existing (or create entirely new) transport
protocols in hardware. We identify common events and primitive
operations, allowing for a streamlined, modular, programmable
pipeline, including packetization, reassembly, timeouts and packet
generation, all to be expressed by the programmer.

We evaluate our nanoTransport prototype by programming it
to run the reliable message-based transport protocols NDP and
Homa, as well as a hybrid variant. Our FPGA prototype — imple-
mented in Chisel and running on the Firesim simulator — exposes
P4-programmable pipelines and is designed to run in an ASIC at
200Gb/s with each packet processed end-to-end in less than 10ns
(including message reassembly).

CCS CONCEPTS

« Networks — Programming interfaces; Transport protocols;
+ Hardware — Networking hardware.

KEYWORDS
SmartNIC, Hardware Programmability, Low Latency Transport

ACM Reference Format:
Serhat Arslan, Stephen Ibanez, Alex Mallery, Changhoon Kim, and Nick
McKeown. 2021. NanoTransport: A Low-Latency, Programmable Transport

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

SOSR °21, October 11-12, 2021, Virtual Event, USA

© 2021 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-9084-2/21/10...$15.00
https://doi.org/10.1145/3482898.3483365

Stephen Ibanez
sibanez@stanford.edu
Stanford University

Alex Mallery

amallery@stanford.edu
Stanford University

Nick McKeown
nickm@stanford.edu
Stanford University

Layer for NICs. In The ACM SIGCOMM Symposium on SDN Research (SOSR)
(SOSR °21), October 11-12, 2021, Virtual Event, USA. ACM, New York, NY,
USA, 14 pages. https://doi.org/10.1145/3482898.3483365

1 INTRODUCTION

Modern distributed applications send huge numbers of Remote Pro-
cedure Calls (RPCs) between large groups of servers [8, 34, 62]. This
has motivated new proposals to reduce RPC processing times, for
example by redesigning the network interface card (NIC) to reduce
the processing time on the end-host (commercial products [14, 16,
47, 48, 51, 53, 66] and research proposals [4, 19, 25, 28, 34, 36, 39—
41, 43, 44, 62]), and new low-latency transport layer protocols to
reduce delays caused by network congestion [3, 13, 20, 23, 24, 42, 50].
Therefore, we classify prior work to reduce latency in two main lo-
cations: (1) The end-host. For example eRPC [34], a software design
that combines many software techniques to reduce median RPC
response times to 1 — 2us, and NeBuLa [62], a hardware design that
reduces RPC response time below 100ns by integrating the NIC
with the CPU, bypassing PCle, and placing arriving RPC requests
directly into the L1 cache. (2) The network. For example NDP [23],
which mitigates incast congestion by trimming off a packet’s data
in congested switches, sending only the header to the receiver,
allowing it to decide when the packet should be resent.

Clearly, if we wish to minimize overall RPC response time, we
need to minimize latency in the end-host and the network.

In this paper we focus on the transport layer. We are most in-
terested in transport layer protocols that are low latency in two
senses: Algorithms that are simple, with minimal processing time
in the end-host NIC; and low latency in the sense that the algorithm
minimizes congestion delays as the packet traverses the network.

Our approach is to minimize end-host latency by placing the
transport layer in hardware, and to empower others to minimize
congestion delays by making the hardware programmable.
Transport layer processing: Over the years, a lot of work has
gone into reducing transport layer processing time in software.
For example, Google’s micro-kernel approach to host networking,
Snap [45] reports an end-to-end tail latency of 100us. Homa’s Linux
kernel implementation [52] can deliver an incoming message from
the NIC to a user thread in about 5us. eRPC [34], by carefully
optimizing for the common case, reports 850ns wire-to-wire latency
for small 32 byte RPCs with the Timely [49] congestion control
protocol.

The current fastest reported combination of a whole system — a
low-latency NIC with a transport layer — is the nanoPU [28], with
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Figure 1: NanoTransport architecture design. Processing steps are numbered chronologically.

69ns median wire-to-wire RPC response time, using a direct mes-
sage interface to the CPU register file, a hardware thread scheduler,
and fixed NDP-based transport layer (with a 7ns processing time).

It is tempting to think that we are done: Is there much to be
gained by reducing the processing path by a few more nanoseconds?
The nanoPU processes packets entirely in hardware, right up until
the RPC request starts processing in a thread. There appears to be
little headroom to reduce latency further.

However, there is likely still room to improve latency in the
network. The design of the transport layer congestion control al-
gorithm can have big consequences on network latency. Indeed,
researchers continue to propose new protocols to reduce network
latency for RPC messages [1-3, 7, 13, 20, 23, 24, 50], and cloud
service providers report the design and deployment of novel algo-
rithms too [38, 42, 49, 68]. The jury is still out as to which algorithm
is the best, and there may not be a single best algorithm; rather, it
will likely depend on the particular data center topology and the
specific distributed application [57]. For example, in §5.2 we show
scenarios where NDP and Homa are each better than the other.

One way in which transport protocols differ is in the relative
importance given to throughput and latency (median and tail).
It is widely known that even if an RPC request returns a result
quickly on average, the tail latency often dictates the application’s
performance, particularly if it launches multiple RPC requests to
different servers and must wait for all of them to return before
making progress. As the number of cascaded RPCs increase, the
likelihood of a long tail latency increases, defining the end-to-end
performance of the entire system [17].

The right trade-off is likely best determined by a cloud service
provider. But if the transport protocol is baked into fixed function
hardware, it is an expensive and time-consuming task to modify
it. This observation prompted the authors of Tonic [4] to propose
a programmable hardware design for transport protocols which
“exploits the common patterns in transport logic to create reusable
high-speed hardware modules.” Their design assumes the transport
layer will be implemented on an FPGA and that the programmer
will use the Verilog [29] hardware-design language to implement a
new algorithm. Because Verilog requires a steep learning curve, the
authors provide an NS3 model to help users design new protocol

layers. The basic model is that, once a transport connection has
been established, the kernel offloads the connection state and packet
processing to the NIC. The Tonic prototype utilizes ring-buffers
and bitmaps to keep track of connection state and achieves 100Gb/s
with 128 byte packets, and is able to process a packet in about 100ns.

While some NICs are implemented in FPGAs, ASICs (Application
Specific Integrated Circuits) are trending because of their higher
performance, lower power and lower cost. We set out to design a
programmable transport layer inspired by Tonic, prototyped on an
FPGA, but optimized for implementation in an ASIC.

We call our design nanoTransport, and it extends Tonic in sev-
eral ways. First, nanoTransport is designed to run in an ASIC, and
programmed (in the field) using the P4 language [11] which can
achieve ~10x faster packet processing compared to FPGAs. P4
pipelines are already used in modern commercial NICs [47, 53, 66],
and an industry group is creating a standard portable architec-
ture for P4-programmable smart NICs [18]. Second, a wide range
of transport protocols share a common set of triggering events
(e.g. packet arrival, timeouts, duplicate ack) and nanoTransport
exploits P4’s simpler and widely accepted abstractions for them.
It enables interfaces to trigger events in a programmable fashion,
inspired by the event-driven P4 packet processing framework [26].
Third, nanoTransport implements both the sender and the receiver
clients of a transport protocol, whereas Tonic is designed to offload
only the sender-side protocol. Finally, our design is streamlined: It
can process packets in the transport layer in less than 10ns, issuing
a new packet every 2.6ns.

NanoTransport focuses on reducing the transport related pro-
cessing latency. The latency for delivering a message to the ap-
plication thread after transport processing involves mechanisms
such as core selection and thread scheduling which are beyond
the scope of nanoTransport. Therefore, to demonstrate a complete
programmable system, we prototyped nanoTransport on the open-
source nanoPU design framework. ! This allows others to experi-
ment with our design, try out new transport layer protocols, and
improve upon our work. However, our programmable transport
layer is not bound to the nanoPU; it could be used as a standalone,
P4-programmable pipeline in any NIC that offloads the transport

1We prototype our design by building upon the nanoPU RISC-V design repository [27].
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layer to hardware — for example, the RDMA processing pipeline in
a modern NIC.
In summary, the main contributions of nanoTransport are:

(1) We identify interfaces to a common set of events in transport
protocols that can be used as primitives for a programmable
solution.

(2) We observe that transport protocol processing can be effi-
ciently expressed in the P4 programming language.

(3) We build and evaluate the first P4 programmable transport
layer in hardware, that could be added to the nanoPU system,
or standalone in an RDMA NIC pipeline.

(4) We provide an open source FPGA based nanoTransport pro-
totype running at 200Gb/s, even for small packets, while
maintaining less than 100 bytes of state per message.

(5) In our design, a packet can be deterministically processed
in 11ns (median and tail latency), including the ingress and
egress paths. This is three orders of magnitude lower than
common software based implementations and an order of
magnitude lower than Tonic.

(6) We provide a behavioral model of nanoTransport in NS3 [54]
to help designers evaluate new transport protocols and algo-
rithms at scale prior to programming hardware.

The remainder of the paper describes nanoTransport’s building
blocks in §2, design details in §3, prototype FPGA implementation in
§4, and prototype evaluations in §5. We discuss use-cases, feasibility,
and limitations of programmable hardware transport layers in §6.

2 TRANSPORT LAYER DISSECTED

Despite their differences, most transport protocols share a large
set of features. In this section, we explore and enumerate common
features that, later, we use as the basis of the nanoTransport design.

2.1 Protocol Taxonomy

Broadly speaking there are two types of transport protocols: WAN
(wide area network) protocols such as TCP NewReno [21], CU-
BIC [22], and BBR [12]; and DC (data center) protocols, such as
RoCE [46], DCQCN [68] and Timely [49].

WAN protocols are designed for long-lived, reliable bi-directional
byte-streams, and the primary performance metrics are through-
put and fairness. Connections are established by a handshake that
installs per-connection state at both ends, and maintained for the du-
ration of the connection. Because WAN RTTs are typically 1-100ms,
a microsecond level improvement in the end-host processing does
not add much value whereas our focus is on low-latency. Therefore,
we will not consider this type of protocols in our design.

On the other hand, data center protocols are mostly used to
exchange small messages between servers [5, 55]. RTTs are a few
microseconds, and latency sensitive applications can benefit greatly
from further microsecond-level reductions in the end-host process-
ing time [23, 24, 50]. Therefore, nanoTransport focuses on latency-
sensitive, reliable, message-based transport protocols, primarily for
data centers.

Specifically, nanoTransport is designed to allow a user to program
a low-latency, reliable, one-way messaging service.

A (beneficial) consequence of small message communication is
that no persistent connection state is required. This reduces the
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amount of memory a NIC needs to track currently active messages,
making possible faster and lower-power single-chip ASIC solutions.

2.2 Building Blocks

Our programmable hardware transport layer has two service inter-
faces: Below, it exchanges Ethernet frames with the Ethernet MAC.
Above, it exchanges complete, reassembled, reliable messages with
a CPU core or RDMA engine. Regardless of the protocol specifics, a
reliable message-based transport protocol on nanoTransport must:

(1) Split an outgoing message into one or more packets. Packets
are stored for retransmission until successfully delivered to
the receiver.

(2) Reassemble incoming packets back into messages. Packets
arriving out of order are correctly resequenced during re-
assembly.

(3) Maintain timers to trigger packet retransmissions or to can-
cel messages upon repeated failures.

(4) Maintain state for each ongoing message that can, for exam-
ple, allow congestion control logic to decide which packet
to send next, and when.

(5) Generate control packets to signal message state or conges-
tion, for example, ACK, NACK, and GRANT.

A key observation of our work is that only the last two functions
(maintaining per-message state, and generating control packets)
require programmability to support different congestion control
algorithms. The other capabilities are fixed and common to all
reliable message-oriented transport protocols we have encountered.

Tonic made a similar observation [4], and elected to use bitmaps
to keep track of message state and determine which packet to send
next or retransmit. NanoTransport keeps these bitmaps in the re-
assembly and packetization modules, next to the associated packet
data. Different protocols differ in how they modify the bitmaps
when data or control packets are sent and received, how they detect
a packet loss, and how they handle a lost packet. A nanoTransport
programmer determines how events are triggered and processed
(e.g.data packet arrival, packet loss detection, packet acknowledge-
ment) via P4 externs [64] and by extending P4 metadata fields. §3
describes our design in more detail.

3 ARCHITECTURE DESIGN

Figure 1 shows the nanoTransport architecture. The pipeline sits
between the external Ethernet packet interface (the MAC), with
which it exchanges Ethernet frames, and the CPU core (or RDMA
engine), with which it exchanges fully assembled, ready-to-use
messages. The pipeline is self-contained and handles all aspects
of the transport layer on behalf of the CPU. The CPU is needed
to configure and initialize the pipeline, but, in order to minimize
latency, the CPU is not involved in processing individual packets.

The design is deeply pipelined so as to process many packets in
parallel (to maximize throughput), but not too deep (to keep latency
low). The ingress and egress pipelines each contain a mix of fixed
and programmable modules. The two pipelines also operate inde-
pendently, other than when triggering a few well-defined events
(described in §3.4.1 and §3.4.2).

We start by walking through the high-level steps to process
arriving and departing packets and then dive deeper into each



SOSR ’21, October 11-12, 2021, Virtual Event, USA

stage: An arriving packet at the NIC @ is first processed by the
programmable ingress pipeline, where protocol-specific logic deter-
mines how the packet will be processed. The GetRxMsgInfo extern
is then called @. This extern uses flow identifiers such as the 5-tuple
or unique message ID to fetch (or allocate) per-message state in
the reassembly module. The per-message state is common to all
protocols and is described in §3.3.1. Depending on the protocol, the
ingress pipeline may then also choose to trigger a Ctr1PktEvent
© that causes the packet generator to generate a control packet
(acknowledgement, grant or NACK etc. depending on the protocol)
in response to the incoming packet @. The original data packet is
passed to the reassembly module @, which stores it and checks if
the message is complete. The reassembly module maintains and
updates a per-message timer for incoming messages @. Should
a timer expire (indicating message reception failure), all state for
the message is garbage collected. Once all of a message’s packets
have been received, they are reassembled in the correct order and
forwarded as a full message to the CPU (or the RDMA Engine) @.

In the egress direction, when a message is sent from an appli-
cation thread @, it is stored in the packetization module, which
divides the message into MTU size segments and initializes per-
message state variables. A per-message retransmission timer is set
©; if it expires, some of the message’s packets may be retransmitted.
When the packetization module sends a packet, it is enqueued by
the arbiter @ which schedules its departure alongside outgoing
packets from the packet generator. Finally, packets pass through the
programmable egress pipeline m where protocol-specific headers
are added before the packet is sent to the network.

Next, we describe each block in detail and provide the API sig-
natures for event handling.

3.1 Programmable Components

The pipeline contains the following programmable modules: the P4
programmable PISA pipelines and the packet generator module.
PISA Pipelines. A PISA (Protocol Independent Switch Architec-
ture) [10] pipeline provides a simple match-action abstraction, al-
lowing fast, and flexible packet processing by executing P4 pro-
grams [11]. Our design dedicates separate PISA pipelines for ingress
and egress. Each pipeline contains a standard P4 library (core.p4),
as well as several custom externs to support nanoTransport-specific
event handling logic. Users program the pipelines to parse and emit
protocol-specific headers and trigger the predefined event handling
logic in the fixed function blocks.

A typical ingress pipeline flow starts with a packet arriving to
the parser, followed by the match tables. The tables programmed to
match on protocol-specific events and this is where most protocol-
specific functions are performed. For example, an ingress table
may be programmed to match a flag field in the transport header;
if it is a data packet, it is forwarded to the reassembly module
while generating a control packet (e.g.an ACK) in response. If the
incoming packet is a control packet (e.g.an ACK packet from the
remote end), the ingress pipeline processes it and then discards it.

After ingress processing, data packets arrive at the reassembly
module, carrying with them the metadata shown in listing 1. The
metadata includes the IP address and port number of the remote
sender; as well as a unique message ID (tx_msg_id) chosen by the
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sender. The three fields are used to map the message to a locally
unique ID (rx_msg_id). The pkt_offset field indicates the offset
of this packet within the message to which it belongs.

Listing 1: Metadata passed from the ingress pipeline to the
reassembly module, along with the packet payload.

struct ingress_metadata_t {
IPv4Addr_t remote_ip;

PortNo_t remote_port;

bit<16> msg_len;

bit<8> pkt_offset; // Similar to TCP seq no
PortNo_t local_port;

MsgID_t rx_msg_id; // Set by the receiver
MsgID_t tx_msg_id; // Set by the sender

bool is_last_pkt;

The egress pipeline’s main job is to create the correct packet
header for an outgoing packet. The arbiter hands the raw packet
payload to the egress pipeline, which constructs the correct packet
headers using the accompanying metadata. The egress metadata is
shown in listing 2. The credit value indicates the highest packet
offset that is currently authorized to be sent for this message. The
rank is the queueing priority of the outgoing packet. For example,
in Homa, the credit value signals which packets are granted by the
receiver, and the rank value determines which in-network priority
queue should be used by this packet. The first packet in a message
has the is_new_msg flag set to initialize the message processing
logic. The is_rtx flag identifies retransmitted packets, in case the
protocol needs to process these packets differently.

Listing 2: Metadata passed to the egress pipeline along with
the packet payload.

struct egress_metadata_t {
IPv4Addr_t remote_ip;

PortNo_t remote_port;

bit<16> msg_len;

bit<8> pkt_offset;

PortNo_t local_port;

MsgID_t tx_msg_id;

bit<16> credit; // Similar to TCP cwnd
bit<8> rank; // Determines packet priority
bit<8> flags;

bool is_new_msg;

bool is_rtx;

In addition to header processing, transport protocols maintain
protocol-specific state in the PISA pipelines. For example, NDP
keeps state in the ingress pipeline to identify which packet to re-
quest in a PULL control packet. While it is a common misconception
that P4 cannot be used to implement stateful logic, read-modify-
write (RMW) "register" operations are frequently exposed to the
programmer for stateful data plane applications in a match-action
pipeline. §3.2 describes the stateful primitives in the nanoTransport
PISA pipelines and §5.3 discusses the feasibility of their use.
Packet Generator. The user programs the packet generator to
send protocol-specific control packets, such as NACK packets in
NDP [23], GRANT packets in Homa, and INT acknowledgements in
HPCC [42]. The module is triggered by CtrlPktEvent extern call
from the ingress pipeline, which is essentially a mirrored packet
carrying the metadata shown in listing 2. The metadata set by the
ingress pipeline determines which control packet(s) to generate.



NanoTransport: A Low-Latency, Programmable Transport Layer for NICs

Different transport protocols generate control packets at differ-
ent times and rates, and in different formats. For example, NDP
paces its outgoing PULL control packets, used to tell the sender
when to resend trimmed packets. The PULL packets must be sent
at specific times. HPCC piggybacks a template to outgoing packets
in the reverse direction, to carry INT reports added by switches
along the path. Fortunately, the range of operations is quite small.

3.2 Stateful Primitives

This section describes the stateful primitives that can be used by the
programmer in the ingress and egress PISA pipelines in order to de-
velop protocol-specific functionality. After a survey of low-latency
transport protocols, we identified a list of primitives that would be
required to implement a wide range of algorithms. These primitives
implement various read-modify-write (RMW) operations and are
exposed to the data-plane programmer as P4 externs. Sivaraman
et. al [60] propose the following set of stateful primitives that are
useful across many data plane applications:

e RW - Read or write a state variable.

o RAW - Add a value to OR overwrite a state variable.

e PRAW - Perform RAW on state variable only if the provided
predicate evaluates to true, otherwise leave it unchanged.

o ifElseRAW — One RAW for true and one for false predicate.

We find that for some transport protocols (e.g. NDP), these oper-
ations are sufficient. However, other protocols (e.g. Homa) require
more sophisticated stateful primitives, such as multi-ported mem-
ory, to share state variables across pipeline stages, and between
ingress and egress pipelines.

In addition, nanoTransport also includes a priority scheduler,
which is exposed to the programmer as a P4 extern. The sched-
uler can store and compare multiple stateful objects using a user-
provided priority value and predicate function. The programmer
can insert and remove objects, and update the priority of existing
objects. When called, the scheduler will return the highest priority
object for which the predicate evaluates to true. §4.4 describes how
we used the priority scheduler and other primitives to implement
Homa’s SRPT message granting logic. This primitive will be useful
for other protocols as well [3, 20, 24].

According to our survey, NDP and Homa are the two protocols
that together require all the identified primitives. Therefore we
evaluate nanoTransport’s performance on these protocols. §6.2
further discusses implementing other protocols on nanoTransport.

3.3 Reassembly Module

The reassembly module is responsible for delivering message data
in the correct order. If the packets within a message arrive out
of order (e.g., because of packet-by-packet multipath routing, or
retransmission), the reassembly module correctly resequences them
before handing the message to the application thread. Since the
packet reordering logic is protocol-agnostic, nanoTransport handles
it with a fixed function block.

The reassembly module maintains a bitmap for every message,
called receivedBitmap, where each bit corresponds to a packet in
the message.? Each packet arriving at the reassembly module is

ZEvery packet of a message, except the last one, is assumed to be MTU bytes long.
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stored in the corresponding buffer. If the is_last_pkt flag is set
on the accompanying metadata, the module forwards the entire
message to the cores. The is_last_pkt flag is calculated during
the GetRxMsgInfo extern call, which is described next.

3.3.1 GetRxMsgInfo Extern. The receivedBitmap is maintained
to allow for message reassembly, and to determine which data/con-
trol packets to send next. The bitmap state is fetched by the ingress
pipeline by calling the extern with the get_rx_msg_info_req_t
metadata. The content of the input and output metadata for the
GetRxMsgInfo extern are shown in listing 3.

Listing 3: IO for GetRxMsgInfo extern
// Metadata provided to the extern call

2 struct get_rx_msg_info_req_t {

bool mark_received; // Flag for read-only calls
IPv4Addr_t src_ip; // Sender's IP address

PortNo_t src_port; // Sender's port number

MsgID_t tx_msg_id; // Unique ID set by the sender
bit<16> msg_len; // Length of the message

bit<8> pkt_offset; // Index of the current packet

)

// Metadata returned from the extern call
struct get_rx_msg_info_resp_t {

bool fail; // Extern return status

MsgID_t rx_msg_id; // Unique ID set by the receiver
bool is_new_msg; // Msg not seen before

bool is_new_pkt; // Packet not received before
bool is_last_pkt; // Msg completely received
bit<9> ackNo; // Smallest non-received pkt_offset

The mark_received flag in the input metadata signals whether
or not the receivedBitmap should be updated by the extern call.
If true, the value at index pkt_offset is set to 1 before the output
metadata is generated.® The remaining get_rx_msg_info_req_t
metadata is used as the match fields of the rx_msg_id_table in
the reassembly module, a lookup table yielding the unique locally-
assigned rx_msg_id for the arriving message. If no entry in the
table is matched, a new ID is allocated from the list of free IDs.

The GetRxMsgInfo extern returns get_rx_msg_info_resp_t
metadata, including the rx_msg_id for the message and the state
corresponding to the message. The fail flag signals that the re-
assembly module was unable to allocate resources for this message,
and the programmer decides how the ingress pipeline processes
such messages. is_new_msg is used to initialize the packet process-
ing logic for a new message. is_new_pkt helps prevent processing
duplicate packets. is_last_pkt denotes that all the bits in the
receivedBitmap are set to 1. This value is passed along with the
packet to the reassembly module, to mark message completion.

3.4 Packetization Module

NanoTransport accepts complete messages from application threads
and breaks them into Ethernet packets for network transmission.
In addition to storing the message data, the packetization module
maintains state variables for the message, similar to [4], so that the
module can keep track of the communication between the sender
and the receiver. The state variables and their roles are listed below:

3This is useful when an arriving packet belongs to an incoming message, but it is not
a data packet, e.g. trimmed packets in NDP.
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e deliveredBitmap: Tracks which packets are delivered to
the destination. The ingress pipeline can be programmed
to trigger DeliveredEvent to update values of this bitmap.
Eventually, the packetization module clears the memory
allocated to the message when all of its packets are delivered.

e credit: The largest pkt_offset value that is allowed to be
transmitted. All the smaller pkt_offset values are allowed
to be sent into the network. The protocol logic in the ingress
pipeline uses CreditTxEvent to update this value.

e txBitmap: Tracks packets that are to be (re)/transmitted. To
emit a packet, the packetization module chooses the smallest
index from this bitmap whose value is 1. Then, the corre-
sponding value is reset to 0. CreditTxEvent can be triggered
to set a value in this bitmap back to 1 for retransmission.

e maxTxPktOffset: Tracks the highest pkt_offset sent so
far. Determines packets to be retransmitted upon a timeout.

e timeoutCnt: Tracks the number of timeouts the message
has received without updating the maxTxPktOffset value.
If this number is higher than the configured threshold, the
packetization module gives up on the message and clears all
memory allocated to it.

The packetization module also stores the message ID, sender and
receiver’s port numbers and receiver’s IP address. The egress meta-
data shown in listing 2 is generated from these values whenever a
packet is sent. The packetization module chooses a message from
the memory which has packets that are allowed to be sent. The
packet with the smallest allowed-index is forwarded to the arbiter
along with the metadata.

Next, we describe the events that are used to update the packeti-
zation module’s state variables.

34.1 DeliveredEvent. Informs the packetization module that
the packet has been successfully delivered to the remote host. The
sender sets the corresponding bit in the deliveredBitmap, so that
the packet is not retransmitted in the future. Typically, a received
acknowledgement packet triggers this event, as decided by the
programmer. Algorithm 1 shows the main processing logic triggered
by this event. ackBitmap is a bitmap created by the ingress pipeline
to indicate which packets to mark as delivered.

3.4.2 CreditTxEvent. Signals that a message is currently allowed
to send more packets (new packets or retransmissions). txBitmap
is modified to identify which packets can be sent next time there is
sufficient credit to transmit one. For example, in Homa, an arriv-
ing Grant packet triggers this event. Algorithm 2 shows the main
processing logic triggered by the event. rtxBitmap is the input
argument indicating which packets are to be retransmitted. It is set
by the ingress pipeline under the control of the programmer. For
example, NDP sets the bit for NACK packets for trimmed packets.
A protocol may require several packets to be retransmitted at the
same time, e.g. selective NACK similar to SACK [31].

34.3 TimeoutEvent. Every message in the packetization module
initiates a timer, along with metadata called rtx_offset, in the
timer module. The metadata is the highest pkt_offset transmit-
ted for the message as of the time the timer is scheduled. When
a timer expires, the timer module triggers the packetization mod-
ule’s TimeoutEvent to compute packets for retransmission. All
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non-delivered packets which have smaller offset than rtx_offset
are retransmitted. Finally, a new timer is scheduled for the same
message to account for future retransmissions. Algorithm 3 shows
the processing logic triggered by this event. Detailed description of
how the timer module works is provided in §3.5.

Algorithm 1: DeliveredEvent processing logic

Inputs:tx_msg_id, and ackBitmap
1 deliveredBitmap = bitmap_table.lookup(tx_msg_id);
2 deliveredBitmap |= ackBitmap;
3 if deliveredBitmap.all() then
4 ‘ ClearStateForMsg (tx_msg_id);
5 end

Algorithm 2: CreditTxEvent processing logic

Inputs:tx_msg_id, rtxFlag, rtxBitmap,
creditUpdateFlag, newCredit, allowTxFlag
txBitmap = bitmap_table lookup(tx_msg_id);

-

)

if rtxFlag then txBitmap |= rtxBitmap ;
if creditUpdateFlag then
currentCredit = credit_table.lookup(tx_msg_id);

oW

if currentCredit < newCredit then

5

6 ‘ currentCredit = newCredit;
7 end
s end

// Determine which packets are allowed to be sent
txPkts = txBitmap & OnesUntil (currentCredit);
10 if txPkts.any() and allowTxFlag then

©

1 Emit (txPkts);
12 txBitmap &= ~txPkts;
13 end

Algorithm 3: TimeoutEvent processing logic

Inputs:tx_msg_id, and rtx_of fset
1 maxTxPktOffset, timeoutCnt =
state_table lookup(tx_msg_id);
2 deliveredBitmap, txBitmap =
bitmap_table.lookup(tx_msg_id);
3 if timeoutCnt > threshold then
4 ‘ ClearStateForMsg (tx_msg_id);
5 else
6 if maxTxPktOffset > rtx_offset then timeoutCnt = 0
else timeoutCnt +=1;
7 rtxPkts = (~deliveredBitmap) & OnesUntil (rtx_offset);
8 if rtxPkts.any() then

9 Emit (rtxPkts);
10 txBitmap &= ~rtxPkts;
11 end

12 Timer — ScheduleEvent (tx_msg_id, maxTxPktOffset);
13 end
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Our experience so far is that the fixed-function timeout event
processing is sufficient for a wide class of transport protocols. How-
ever, it is possible that some protocols will need to handle time-
out events differently. For example, timer events might need to
generate control packets, or periodically update protocol state in
the ingress/egress pipelines. Therefore, a future version of the nan-
oTransport architecture may benefit from making the timeout event
processing programmable as well.

3.5 Timer Module

Timers are required for two purposes: (1) identify packets that have
not (yet) been acknowledged and need to be retransmitted, and (2)
identify messages that have been idle (have not sent or received
packets) for a long time; i.e. to clean up per-message soft state.
Software implementations can maintain a timer per packet. In
hardware, it is challenging to maintain a timer for every in-flight
packet - potentially a large number depending on the network’s
BDP and the configured timeout duration. To reduce memory re-
quirements, nanoTransport maintains a single timer per message.
When the applications write a new message to the packetization
module, the egress timer module’s ScheduleEvent is triggered.
This event creates a new timer for the corresponding message,
along with associated metadata. When this timer expires, the pack-
etization module’s TimeoutEvent is triggered. This event may or
may not cause a new timer to be scheduled for the same message.
When the message is successfully delivered to the remote client, the
packetization module fires a CancelEvent within the timer module
before deleting the state for the message. This event ensures that
no timers are left behind which may timeout spuriously.
Similarly, when the first packet of a message arrives at the re-
assembly module, ScheduleEvent of the ingress timer module is
triggered, which creates a new timer for the corresponding message.
Since there is no notion of retransmission in the ingress direction,
this timer is only used to discard the state for the message from
the reassembly module. In order to prevent timeouts, each arriving
message packet triggers ReScheduleEvent, which mainly resets
the timer. Finally, a completed message signals CancelEvent to
invalidate the associated entry in the ingress timer module.

4 HARDWARE IMPLEMENTATION

Our nanoTransport prototype extends the open source nanoPU
design [28] by adding 2500 lines of Chisel [6] code and 1000 lines of
P4 code. We use Firesim [35] to run large-scale, cycle-accurate sim-
ulations of our prototype on AWS FPGAs [59]. This lets us evaluate
the end-to-end functionality and performance of our design. The
following sections provide details of our nanoTransport prototype.

4.1 Programmable Modules

We implemented the ingress and egress pipelines using P4 and
Xilinx SDNet* [61]. The SDNet compiler generates a Verilog mod-
ule with the required functionality, which we integrate into the
nanoTransport prototype. We verify correct functionality of the de-
sign using Synopsys VCS [63] cycle-accurate simulations, however,
due to licensing restrictions, we are currently unable to use SDNet
generated modules on AWS FPGAs. As a result, we hand-compiled

4Xilinx SDNet is also known as Vitis Networking P4.
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our P4 code into Chisel so that we can evaluate the full system
with Firesim on AWS FPGAs. The evaluation results described in §5
use our hand-compiled P4 code. Each P4 program is implemented
as a custom pipeline, similar to how SDNet maps P4 programs to
FPGAs. An ASIC prototype would instead have a fixed number of
pipeline stages which all programs must be mapped to; we plan to
explore this approach in future work.

Recall that the Packet Generator in nanoTransport is a pro-
grammable module. When processing a Ctr1PktEvent from the
ingress Pipeline, the packet generator might generate one or more
control packets while (optionally) pacing their transmission rate.
We observe that these operations are not particularly well-suited
for a P4 pipeline, which is typically used to transform individual
packets. As aresult, in our current prototype we program the packet
generator in Chisel. We will explore more convenient, higher level
abstractions for programmable packet generation in future work.
One possibility is to use P4 along with new custom externs to fork
(duplicate) and pace packets within the pipeline.

4.2 Reassembly and Packetization Modules

The reassembly module reassembles packets, which might arrive
out-of-order, into contiguous messages for delivery to applications.
The packetization module splits messages into segments, which
might get retransmitted out-of-order due to packet loss in the net-
work. In order for these tasks to be performed at line rate, we must
use simple data structures which require only constant time op-
erations. We could choose from several different approaches; this
section describes the buffer design in our prototype.

Our message buffer is divided into buffers of several different
fixed sizes, and a free list for each size class keeps track of which
buffers are available. When a buffer is to be allocated, the smallest
available one that is large enough to store the whole message is
selected. For message reassembly, a buffer is allocated when the first
packet of the message arrives from the network and is freed when
the message is forwarded to the processing cores.” For message
packetization, a buffer is allocated when the application writes the
first word of the message and is freed when the entire message has
been successfully delivered to the receiver. The design uses a table
indexed by message identifier to keep track of where each message
is stored (the buffer pointer).

One of the benefits of using fixed size buffers to store messages
is that it simplifies out-of-order reassembly and retransmission:
to find the position of a particular packet within the message, the
hardware simply adds the appropriate offset to the message’s buffer
pointer. In addition, the logic that is required to manage memory
buffers is very simple and can run at line rate. Buffer allocation
requires one dequeue from a free list, and freeing a buffer requires
one enqueue to a free list; there is no need for complex partitioning
and merging of variable size buffers.

The primary drawback of using fixed size buffers is that it leads
to memory fragmentation and potentially poor utilization of the
buffer space. It is therefore important to properly configure these
message buffer modules. Configuration involves selecting how to
carve the total buffer space into fixed size buffers. If the message

5 An arriving packet is dropped at the ingress of the reassembly module if it is unable
to allocate a buffer for the message.
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size distribution is known at configuration time, then it is often
possible to achieve very high utilization of the buffer.

4.3 Timer Modules

The timer modules in the nanoTransport architecture maintain a
single timer, along with associated metadata, for each message in
the reassembly / packetization modules. Our aim is to minimize
memory and logic requirements while ensuring that timers can be
scheduled or canceled in constant time. Furthermore, since timers
are used to trigger packet retransmissions or for garbage collection
in the background, we do not need the timers to expire exactly on
time, nor do we need them to expire in the correct order. The main
requirement is that they expire within a bounded amount of time.

These requirements lead to a very simple hardware design. The
timers for each message are stored in a single memory indexed by
message ID. The entry contains the following fields: a single valid bit
indicating whether or not the entry is valid, a 64-bit timeout value
indicating the time at which the timer expires, and associated timer
metadata. A background thread sequentially scans the entries and
checks if the timer has expired. If so, it will extract the metadata and
trigger a timeout event. Scheduling and canceling a timer simply
involves writing a single entry to memory. In some cases, a timer
may expire immediately after the background thread checks it,
in which case the timeout event will not be triggered until the
background thread loops back around to it. However, note that even
in this case the timer will expire within a bounded amount of time,
which is determined by the maximum number of timers/messages
in the system. This simple design meets our requirements.

4.4 Protocol Implementations

To evaluate nanoTransport we program it to support two different
protocols, chosen to represent a relatively wide range of features
required by other protocols [2, 3, 7, 13, 20, 24].

NDP [23] is the first protocol we programmed on our proto-
type. NDP is receiver driven and aims to reduce the tail latency
of network messages by ensuring that all dropped packets are re-
transmitted quickly. When congested, NDP-enabled switches trim
data packets that would otherwise be dropped, forwarding only
the packet headers to the receiver, at high priority. The receiver
then quickly sends negative acknowledgements (NACKs) to inform
the sender of the packet loss. This mechanism allows NDP to avoid
relying on long timeouts. NDP senders initially send only up to one
bandwidth-delay-product (BDP) worth of packets; the receiver ex-
plicitly pulls the remaining ones, while pacing them to ensure that
the arrival rate of the pulled packets does not exceed the capacity
of the bottleneck link. New data packets are pulled round-robin
among messages, with the assumption that if a data packet leaves
the network, a new one can be inserted without overwhelming it.

Algorithm 4 provides pseudocode for our NDP implementation
in P4. The protocol uses a stateful operation to read the previous
credit for the message and increment it if needed. This operation is
represented with the IfE1seRaw extern, described in §3.2.

Homa [50] is the second protocol we programmed on our pro-
totype. Homa is also a receiver driven protocol, but unlike NDP, it
is designed with the assumption that packet loss is extremely rare
in modern networks. Thus, it simply relies on timeouts to detect
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Algorithm 4: NDP P4 Pseudocode

1 Control Ingress(out ingress_metadata):

2 state credit;
3 if hdr.ndp.flags. DATA then
4 msg_info = GetRxMsgInfo();
5 if hdr.ndp.flags.TRIM then
6 ‘ genNACK = true; pull_offset_diff = 0; Drop();
7 else
8 ‘ genACK = true; pull_offset_diff = 1
9 end
10 if !msg_info.fail && msg_info.is_new_pkt then
1 // ifElseRAW extern
12 if msg_info.is_new_msg then
13 ‘ credit[msg_info.id] = ... // initialize
14 else
15 ‘ credit[msg_info.id] += pull_offset_diff;
16 end
17 pull_offset = credit[msg_info.id];
18 CtrlPktEvent(genACK, genNACK, pull_offset);
19 end
20 else
21 if hdr.ndp.flags. ACK then DeliveredEvent();
22 if hdr.ndp.flags.NACK || hdr.ndp.flags.PULL then
CreditTxEvent();
23 Drop();
21 end
25 Control Egress(in egress_metadata):
26 hdr.ethernet.SetValid();
27 hdr.ip.SetValid();
28 hdr.ndp.SetValid();
29 FillHeadersFromMetaData(egress_metadata);

dropped packets rather than utilizing packet trimming within the
network. However, it does require switches to support at least a few
strict priority queues. Additionally, rather than using a round robin
"pull" mechanism, Homa aims to minimize message completion
time by approximating SRPT [58] scheduling at the receiver. We use
the priority scheduler extern described in §3.2 to implement Homa’s
SRPT message granting logic. The scheduler maintains metadata
about all active messages, and we assign the rank (i.e.priority) to be
the remaining size of the message (lower value is higher priority).
The scheduler returns the highest priority “grantable” message,
where a grantable message is one that has fewer than one BDP of
data outstanding. Messages are removed from the scheduler after
they have been fully granted.

The implementation of the priority scheduler takes advantage
of the fact that most messages are small (less than 1 BDP) and
hence do not need to be scheduled; only a few messages need to
be scheduled at any given time. Therefore, the scheduler extern
maintains the message state in registers so that it can compare them
all simultaneously. Our prototype scheduler extern supports up to
16 scheduled messages for simultaneous comparison whereas the
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Algorithm 5: Homa P4 Pseudocode

1 state msgPrio;
2 Control Ingress(out ingress_metadata):

3 state msgState;

4 priorityScheduler grantScheduler;

5 if hdr.homa.flags. DATA then

6 msg_info = GetRxMsgInfo();

7 if !msg_info.fail && msg_info.is_new_pkt then
8 /] ifEIseRAW extern

9 if msg_info.is_new_msg then

10 ‘ msgState[msg_info.id] = ... // initialize
11 else

12 ‘ msgState[msg_info.id].remaining_size -= 1;
13 end

14 sched_msg = grantScheduler.apply(...);

15 if sched_msg then

16 // RAW extern

17 msgState[sched_msg.id].grantedldx =

sched_msg.grant_offset;

18 CtrlPktEvent(msgState[sched_msg.id]);
19 end

20 end
21 else

22 DeliveredEvent();

23 if hdr.homa.flags. GRANT then

24 msgPrio[hdrhoma.tx_msg_id] = hdrhoma.prio;
25 CreditTxEvent();

26 end

27 Drop();

28 end
29 Control Egress(in egress_metadata):

30 hdr.ethernet.SetValid();

31 hdr.ip.SetValid();

32 // RW extern

33 hdr.ip.tos = msgPrio[egress_metadata.tx_msg_id];
34 hdr.homa.SetValid();

35 FillHeadersFromMetaData(egress_metadata);

remaining scheduled messages, if any, are stored in a FIFO queue
until a register space opens.

In addition to the scheduler, Homa uses two dual ported memory
primitives (§3.2) as shown in Algorithm 5. One of those dual ported
memories is used to maintain information about messages - it
is accessed/updated by data packets as they arrive, then updated
further down the pipeline after deciding which message to grant.
The other dual ported memory is used to track the priority of
messages being transmitted. Incoming GRANT packets update the
memory and outgoing data packets read it. Hence this state is shared
between the ingress and egress pipelines.

To evaluate the programmability of our prototype, we created a
new low-latency, reliable message transport protocol that we call
Homa-Tr. Homa-Tr combines features from NDP and Homa, in the
manner a user programmer might pick and choose features from
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different protocols. We chose to include NDP’s ability to quickly
recover from packet loss by trimming packets in the switches and
sending negative acknowledgements (NACKs). We adopt Homa’s
ability to reduce message completion time by GRANT’ing messages
in SRPT order. It proved relatively quick and easy to implement
Homa-Tr, incorporating NDP’s packet trimming and NACK mecha-
nism into Homa. Evaluation details are provided in §5.2.

P4 source code for the protocols is available in our open source
artifact [27]. Our NDP and Homa implementations required 376
and 520 lines of P4 code, respectively, which is an order order of
magnitude less code than available software based implementa-
tions.

5 EVALUATION

We evaluate the performance, correctness, and feasibility of our
transport protocol implementations on the nanoTransport architec-
ture. To evaluate performance and correctness, we run microbench-
marks and end-to-end experiments using cycle-accurate simula-
tions on AWS FPGAs [59] with Firesim [35]. The FPGAs run at
90MHz and we simulate a target CPU and NIC clock rate of 3.2GHz.
All of the results reported in this section are based upon the target
3.2GHz clock rate. To evaluate the feasibility of deploying our de-
sign in hardware, we examine the FPGA resource utilization and
compare to a more traditional, open source NIC, called IceNIC [35],
which does not implement the transport layer in hardware.

The design, implementation, and testing cycle for hardware pro-
totyping is slow and expensive (even on FPGAs). Yet transport
protocol designers generally need to conduct large-scale experi-
ments to verify a protocol’s functionality and usefulness. In order
to ease the development process, we also developed a C++ based
behavioral model for the nanoTransport architecture in NS3 [54].
A protocol is first tested at scale using NS3, before programming
the hardware. Since the performance results are the same for our
NS3 model and the hardware prototype, we omit them here. The
source code for the NS3 behavioral model is provided as a part of
the open source artifact along with the hardware prototype [27].

5.1 Latency and Throughput Microbenchmarks

NanoTransport is designed to process packets at 200Gb/s. For 1088
byte packets, 200Gb/s means that a new packet can be transmitted
or received every 44ns. We verify that this is the case in the incast
experiment described in §5.2.

We also evaluate the maximum throughput for the worst case
traffic pattern. To measure the RX throughput, we send small 65
byte packets at 200Gb/s (380Mrps) to a nanoTransport receiver.
Each packet is a separate message and carries 1 byte of payload as
well as 64 bytes of packet header. We verify that the minimum sized
incoming messages are forwarded to the cores at line rate. On the
TX side, we generate the same workload on cores and verify that
the outgoing messages are transmitted at line rate onto the wire.
Our prototype is able to support the target throughput of 200Gb/s
in the worst case for both NDP and Homa implementations.

Table 1 shows the RX and TX latency breakdown for our NDP
and Homa implementations. Homa’s ingress and egress pipelines
utilize five and two stages respectively and have a slightly higher la-
tency due to its central message scheduling decisions, whereas NDP
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Table 1: RX and TX latency (first byte in to first byte out) on our nanoTransport architecture for the NDP and Homa imple-
mentations when processing a single 16 byte message (80 byte packet).

RX Latency (ns) TX Latency (ns) Grand
Ingress Reassembly Total | Packetize Egress Total | Total (ns)
NDP 5 0.94 5.94 2.81 0.31 3.12 9.06
Homa 6.25 0.94 7.19 2.81 0.94 3.75 10.94

utilizes only three and one stage. The number of stages is deter-
mined by sequential dependencies between extern calls / memory
accesses. Nevertheless, the transport processing requires at most
7.2ns in the ingress path, and 3.8ns in the egress path, resulting in
a maximum transport layer round-trip time of 11ns.

NanoTransport’s latency is three orders of magnitude lower
than the 4.8ys reported for the Homa Linux Kernel Module [52].
The latency through the Linux network stack is very sensitive to
interrupt processing overheads and OS thread scheduling decisions.
Ousterhout [52] reports tail round-trip latency of 15.1pus, 23.4ps,
and 24.1us for Homa, TCP and DCTCP respectively.

eRPC [34] is a state-of-the-art, low-latency software network
stack and reports a wire-to-wire latency of 850ns. It is difficult to
compare nanoTransport directly to eRPC’s transport layer. How-
ever, the paper does report measurements which suggest that the
congestion control logic adds an average of 17.8ns of per-packet
software latency, which is comparable to nanoTransport’s latency.
That being said, this measurement is reported under best case con-
ditions in which the network is not congested and thus most of the
congestion control logic is bypassed for almost all packets. On the
other hand, the nanoTransport latency values reported in Table 1
are deterministic. Furthermore, the eRPC measurement does not
include other aspects of the transport protocol such as message
packetization/reassembly or retransmission logic. Finally, as a re-
sult of running in software, a single eRPC core can only process up
to about 10Mrps, which is about 38x lower throughput than the
pipelined nanoTransport design.

5.2 End-to-end Evaluation

In order to evaluate the end-to-end performance, functionality of
the architecture and protocol implementations (i.e. NDP, Homa,
and Homa-Tr) we ran incast experiments using Firesim. In these
experiments, ten senders each transmit one message to the same
receiver at the same time. Each message has a distinct size, ranging
from 20 to 38 MTU sized (1088B) packets. This experiment is run
on a simple dumbbell topology; the bottleneck link is the receiver’s
down link. The RTT between the sender and the receiver is 525ns,
and all the links run at 200Gb/s. We run two experiments, one in
which the bottleneck buffer size is large enough to absorb the incast;
and one in which the bottleneck buffer size is too small to absorb
the incast, resulting in packet loss and/or trimming.

We verify the correctness of the protocol programs by examining
the packet traces of the incast. Figure 2a shows the bottleneck queue
occupancy in each experiment. As expected, the NDP client PULLs
a data packet every time it receives one, so that the total number
of packets in flight, and hence the queue occupancy, stays high
until some messages complete. On the other hand, the Homa client

sends GRANTS for only a few messages,® which allows the queue
occupancy to stabilize at a low level after the first RTT of the incast.

Figure 2b shows the message completion time slowdown for each
message in each of the two experiments. We define slowdown as
the ratio of actual message completion time to the ideal completion
time without any congestion in the network (smaller is better).

When the buffer is large, packets are not lost, enabling both NDP
and Homa to smoothly PULL/GRANT new packets from the senders.
However, Homa achieves lower slowdowns because messages are
GRANTed in SRPT order — a policy designed to minimize message
completion time. Since larger messages wait until the smaller ones
complete, the slowdown for Homa increases with the message size.
On the other hand, NDP pulls messages in a round-robin fashion,
causing similarly high slowdowns across all messages.

When the buffer size is too small to absorb the incast, the relative
performance of the protocols completely changes. In this case, NDP
is able to achieve lower slowdowns because it enables senders to
quickly retransmit lost data using packet trimming and NACKs.
Homa, on the other hand, relies on timeouts to detect packet loss.
Therefore, NDP still achieves similar slowdowns for all the mes-
sages, whereas it takes longer for Homa to complete the messages.

We programmed our nanoTransport prototype to implement a
new protocol called Homa-Tr (§4.4) which combines features of
Homa and NDP. Homa-Tr incorporates NDP’s packet trimming
and NACK’ing mechanism into Homa so that messages are granted
in SRPT order while enabling quick recovery from packet loss.
Figure 2b shows that Homa-Tr performs exactly the same as Homa
when the buffer size is sufficiently large. However, when the buffer
size is reduced by half (54KB), Homa-Tr is able to quickly recover
from losses, and achieve ~2X better slowdown compared to Homa
and ~1.5X better slowdown compared to NDP.

Experimental results suggest that the nanoTransport architec-
ture can be programmed to run different low-latency protocols, and
that our protocol implementations behave as expected.

5.3 Feasibility

We evaluate the cost of implementing a programmable transport
layer in hardware. Figure 3 shows the FPGA resource utilization for
our NDP and Homa implementations. To gauge the cost of putting
the transport layer in hardware, we compare the resources used by
nanoTransport against a baseline, called IceNIC [35], which does
not implement any transport processing.

A basic NIC, like IceNIC, is very simple: It contains Ethernet
header parsing, some staging memory and the DMA logic to transfer
packets to and from host memory. Relative to IceNIC, nanoTrans-
port adds all the transport logic described above, and Figure 3 shows

®Homa sends GRANTS to multiple messages, called overcommitment, to account for
cases where some senders are busy with sending other messages.
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Figure 2: Ten incast messages to the same receiver with different transport protocols and bottleneck buffer sizes. Sender and

receiver NICs are all running the nanoTransport prototype.

= NDP = Homa = IceNIC
10000
9705
5000 6040 —
2500 e
0
Logic LUTs FFs Total Mem (KB)

Figure 3: FPGA resource utilization of nanoTransport when
running NDP and Homa (39KB max message size and 16 con-
current messages) compared to traditional IceNIC, which
does not implement any transport processing,.

that the logic and flip flop utilization grows by about 30% for NDP
and 60% for Homa. This is as much a reflection of the simplicity of
the simple IceNIC as the additional complexity of nanoTransport:
Table 2 shows that nanoTransport consumes less than 2% of the
logic and flip-flops of a Virtex Ultrascale+ FPGA [67]; it would
require a much smaller fraction of an ASIC.

NanoTransport also requires memory for packetization and re-
assembly as opposed to IceNIC. The amount of memory depends on
the number of concurrent messages. When designed to support up
to 16 concurrent 39kB messages, nanoTransport needs about 1.2MB
of on-chip SRAM’ (Table 2). If instead 128 concurrent 39kB mes-
sages are supported, it consumes 8.4MB, which occupies less than
2mm? on a modern 7nm ASIC. The memory requirement increases
linearly with the number of concurrent messages supported.

We conclude that nanoTransport could easily be added to a
modern NIC. Modern NIC ASICs already include tens of MB of on-
board SRAM [66]; adding the logic and memory for a programmable,
low-latency, reliable messaging transport layer appears to be a
relatively small additional cost.

6 DISCUSSION
6.1 FPGA versus ASIC

Our prototype was built to run on an FPGA as a proof-of-concept
and evaluation platform. Yet our design is not necessarily the right

"Including message payload and the associated state, as described in §3.4.

Table 2: The resource utilization of our NDP prototype when
configured to support both 16 and 128 concurrent 32KB mes-
sages. The percentage in each entry indicates the % utiliza-
tion of the corresponding resource available on the Virtex
Ultrascale+ FPGA.

#Msgs Logic LUTs Flip Flops Total Mem (MB)
16 6999 (0.59%) 5043 (0.21%) 1.2 (11.9%)
128 23578 (1.99%) 8941 (0.38%) 8.4 (85.7%)

choice for an FPGA-based NIC, where the FPGA itself can be re-
optimized for a new transport protocol using Verilog.

However, ASICs mostly run faster, consume less power and cost
less in volume than FPGAs [15]. NanoTransport, while tested on
FPGA, is designed to be implemented in a custom NIC ASIC. In
future work, we plan to synthesize the nanoTransport design and
develop an ASIC implementation, possibly with a RISC-V CPU core.

6.2 Programming New Protocols

So far, we programmed and evaluated nanoTransport when running
low-latency receiver-driven protocols, NDP, Homa and Homa-Tr.
For comparison, we also evaluated what it would take to program
nanoTransport to run the HPCC [42], which is sender-driven (rather
than receiver-driven). An HPCC sender examines the stack of INT
reports [37] in every packet, determines the bottleneck link, and cal-
culates the new window size. The PISA pipelines in nanoTransport
can be used to process INT reports given switches are capable of
generating them. If needed, P4 programmable switches can leverage
the optimizations proposed in PINT [9] to reduce the amount of
processing, thus pipeline stages, in the NIC.2 The sender nanoTrans-
port client can then use simple lookup tables in the P4 pipeline to
calculate the congestion window size.

We also evaluated implementing DCQCN [68] and Swift [38],
both of which require floating point computation at the NIC to
calculate rates and congestion windows. Our nanoTransport proto-
type does not support floating point operations. This leaves three
design choices: (1) Add floating point to the P4 pipeline in hardware;
assuming we need about 200 million floating point operations per
second, this is relatively straightforward in a modern ASIC, (2) Use

8The switches compute the link utilization along the path instead of the end host.
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higher precision fixed point arithmetic, which is already supported
in switch ASICs [30], or (3) Use lookup tables in the P4 pipeline. We
anticipate ASIC implementations will utilize all three techniques.

6.3 Multiple Concurrent Protocols

The CPU might host multiple applications, each requiring high per-
formance transport protocols; hence the NIC may need to support
several protocols at the same time. For example, it might offer a tail
latency-optimized protocol for RPCs, while running a throughput-
optimized protocol for the same application’s bulk transfer traffic.

NanoTransport can do this, provided it has sufficient resources.
Essentially, the programmable parser branches depending on the
transport protocol identifier in the packet header, and the corre-
sponding control logic is applied.

Care would need to be taken by the protocol designer to avoid
undesirable interaction between the different transport protocols in
the network. This is not specific to nanoTransport; it is a problem
that all cloud service providers need to solve, whether the transport
layer is in hardware or software. For example, Homa and NDP both
assume that its receiver is the only entity allocating bottleneck
bandwidth to the incoming messages. The PULL/GRANT mecha-
nism of Homa and NDP may over/under-utilize the bottleneck link
if the link is shared with non-GRANTed/PULLed traffic.

6.4 Encryption and Compression

Network operators may choose to use encrypted traffic in their
network for security reasons. Modern NICs commonly include
dedicated hardware modules for end-to-end encryption, and to
compress data to and from storage [47, 51, 53]. Although we did not
include such modules in our prototype, an ASIC implementation of
nanoTransport could easily include them in its processing pipeline.

6.5 Serializing RPC Data

Low-latency reliable message protocols frequently carry RPC re-
quests, which need to be serialized and deserialized at each end.
It was recently observed that this process can add quite a lot of
latency to RPC requests [65]. Zerializer shows how marshalling
and unmarshalling can be done in hardware. While beyond the
scope of this paper, we would anticipate ASIC implementations of
nanoTransport to add such capabilities to the hardware P4 pipeline.

6.6 Scalability

A key design choice when designing a nanoTransport ASIC will be
the size of the SRAM. Once picked at design time, all programmed
protocols will need to live within the constraint. This means the
ASIC designer needs to decide, up front, how many messages can be
supported, and the size of the largest message. Our prototype sup-
ported up to 128 concurrent 32kB messages, which is reasonable for
Homa and NDP. However, a more careful study of other transport
protocols is needed before committing the size to an ASIC.
Careful consideration is also required when choosing the num-
ber of P4 pipeline stages, which in turn determines how many
serially-dependent operations can be performed on each packet
header. Our NDP and Homa programs require significantly fewer
stages than the 10-20 stages commonly supported in commercial
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P4 pipelines today; however, more protocols should be evaluated
before committing to an ASIC design.

6.7 Other Use-Cases

In addition to RPCs, small messages are frequently sent for RDMA
operations as well. Typically, an RDMA-enabled NIC terminates
transport logic with a fixed protocol, i.e. RoCEv2 or Infiniband, and
directly accesses host memory without bothering the host CPU.
NanoTransport can do the same by sending reassembled messages
directly to the DMA engine. We anticipate this approach would be
commonly supported on ASIC implementations of nanoTransport.

Moreover, an ASIC design would likely be configurable to bypass
the packetization and reassembly module, for transport layers that
application developer prefers to process in software. This would
be especially useful for applications which implement complex
transport features that are not available on hardware.

The available PISA pipelines also enable running data plane
programs that are not transport layer related, such as NetCache [33],
SwitchML [56], and PPS [32] as long as enough TCAM, SRAM, and
pipeline stages are available. We leave exploration of other services
that can be offloaded onto nanoTransport as future work.

7 CONCLUSION

The slowing of Moore’s Law and Dennard Scaling means single
core performance is leveling off; and new applications must be dis-
tributed across an ever increasing number of cores. This is helped by
steadily increasing network speeds. Server NICs have transitioned
quickly from 10Gb/s to 25Gb/s, 100Gb/s and now 400Gb/s.

But all too often the benefits of “many cores and a fast network”
are lost because of an inefficient NIC design, or software in the net-
work stack, or a sub-optimal network congestion control algorithm.

It is therefore natural to consider offloading transport layer into
pipelined NIC hardware which runs at line rate with very low
latency. But despite decades of research, the community has yet
to identify a single protocol that performs the best for every edge
case — there is no one size fits all. Flexibility to program the stack
and deploy tailored protocols is vital, at least for the time being.

The key takeaway from nanoTransport is that it is possible to
build a very high throughput (200Gb/s) NIC, with transport layer
that is very low latency (10ns round-trip), yet is programmable.
Our design exposes a one-way reliable message delivery interface
to supply ready-to-use messages to CPU cores or an RDMA engine
which further helps accelerating network stack performance.

We are still in the early days of cloud computing. Cloud service
providers and their customers are still learning how to develop
large, and fast distributed applications that perform well on a shared
infrastructure. As they learn more, they will likely want to invent
and try out new transport layer protocols. Our work demonstrates
that this is possible, without compromising throughput or latency.
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